BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 33255864)

  • 1. Biosynthesis of Polyhydroxyalkanoates (PHAs) by the Valorization of Biomass and Synthetic Waste.
    Javaid H; Nawaz A; Riaz N; Mukhtar H; -Ul-Haq I; Shah KA; Khan H; Naqvi SM; Shakoor S; Rasool A; Ullah K; Manzoor R; Kaleem I; Murtaza G
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis.
    Ene N; Savoiu VG; Spiridon M; Paraschiv CI; Vamanu E
    Curr Pharm Des; 2023; 29(39):3089-3102. PubMed ID: 38099526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates.
    Shah S; Kumar A
    Braz J Microbiol; 2021 Jun; 52(2):715-726. PubMed ID: 33590449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources.
    Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ
    Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging.
    Tripathi AD; Raj Joshi T; Kumar Srivastava S; Darani KK; Khade S; Srivastava J
    Prep Biochem Biotechnol; 2019; 49(6):567-577. PubMed ID: 30929621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: Impact on performance and microbial population.
    Gouveia AR; Freitas EB; Galinha CF; Carvalho G; Duque AF; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):108-116. PubMed ID: 27422276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: Status and perspectives.
    Sohn YJ; Son J; Lim HJ; Lim SH; Park SJ
    Bioresour Technol; 2022 Sep; 360():127575. PubMed ID: 35792330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sustainability of microbial bioplastics, production and applications.
    El-Malek FA; Khairy H; Farag A; Omar S
    Int J Biol Macromol; 2020 Aug; 157():319-328. PubMed ID: 32315677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
    Urtuvia V; Villegas P; González M; Seeger M
    Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants.
    Poirier Y; Nawrath C; Somerville C
    Biotechnology (N Y); 1995 Feb; 13(2):142-50. PubMed ID: 9634754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks.
    Vigneswari S; Noor MSM; Amelia TSM; Balakrishnan K; Adnan A; Bhubalan K; Amirul AA; Ramakrishna S
    Life (Basel); 2021 Aug; 11(8):. PubMed ID: 34440551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments.
    Li M; Wilkins MR
    Int J Biol Macromol; 2020 Aug; 156():691-703. PubMed ID: 32315680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation for recovery of polyhydroxyalkanoates (PHA) from Bacillus sp. BPPI-14 and Bacillus sp. BPPI-19 isolated from plastic waste landfill.
    Mohammed S; Panda AN; Ray L
    Int J Biol Macromol; 2019 Aug; 134():1085-1096. PubMed ID: 31129215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial polyhydroxyalkanoates: Still fabulous?
    Możejko-Ciesielska J; Kiewisz R
    Microbiol Res; 2016 Nov; 192():271-282. PubMed ID: 27664746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation.
    Castilho LR; Mitchell DA; Freire DM
    Bioresour Technol; 2009 Dec; 100(23):5996-6009. PubMed ID: 19581084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of polyhydroxyalkanoates as a feasible alternative for an integrated multiproduct lignocellulosic biorefinery.
    González-Rojo S; Díez-Antolínez R
    Bioresour Technol; 2023 Oct; 386():129493. PubMed ID: 37460022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of cultivation medium and cyclic fed-batch fermentation strategy for enhanced polyhydroxyalkanoate production by Bacillus thuringiensis using a glucose-rich hydrolyzate.
    Singh S; Sithole B; Lekha P; Permaul K; Govinden R
    Bioresour Bioprocess; 2021 Jan; 8(1):11. PubMed ID: 38650248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in microbial community structure during adaptation towards polyhydroxyalkanoates production.
    Ciesielski S; Klimiuk E; Mozejko J; Nowakowska E; Pokój T
    Pol J Microbiol; 2009; 58(2):131-9. PubMed ID: 19824397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application.
    Sangkharak K; Prasertsan P
    J Gen Appl Microbiol; 2012; 58(3):173-82. PubMed ID: 22878735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.