These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 33256146)
21. Nanobiosensing Platforms for Real-Time and Non-Invasive Monitoring of Stem Cell Pluripotency and Differentiation. Suhito IR; Angeline N; Choo SS; Woo HY; Paik T; Lee T; Kim TH Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30134637 [TBL] [Abstract][Full Text] [Related]
22. Vibration spectroscopy and body biofluids: Literature review for clinical applications. Leal LB; Nogueira MS; Canevari RA; Carvalho LFCS Photodiagnosis Photodyn Ther; 2018 Dec; 24():237-244. PubMed ID: 30282049 [TBL] [Abstract][Full Text] [Related]
23. Tutorial: multivariate classification for vibrational spectroscopy in biological samples. Morais CLM; Lima KMG; Singh M; Martin FL Nat Protoc; 2020 Jul; 15(7):2143-2162. PubMed ID: 32555465 [TBL] [Abstract][Full Text] [Related]
24. Label-free identification and characterization of murine hair follicle stem cells located in thin tissue sections with Raman micro-spectroscopy. Tsai TH; Short MA; McLean DI; Zeng H; McElwee K; Lui H Analyst; 2014 Jun; 139(11):2799-805. PubMed ID: 24728002 [TBL] [Abstract][Full Text] [Related]
25. Synchrotron- and focal plane array-based Fourier-transform infrared spectroscopy differentiates the basalis and functionalis epithelial endometrial regions and identifies putative stem cell regions of human endometrial glands. Theophilou G; Morais CLM; Halliwell DE; Lima KMG; Drury J; Martin-Hirsch PL; Stringfellow HF; Hapangama DK; Martin FL Anal Bioanal Chem; 2018 Jul; 410(18):4541-4554. PubMed ID: 29740671 [TBL] [Abstract][Full Text] [Related]
26. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Hofemeier AD; Hachmeister H; Pilger C; Schürmann M; Greiner JF; Nolte L; Sudhoff H; Kaltschmidt C; Huser T; Kaltschmidt B Sci Rep; 2016 May; 6():26716. PubMed ID: 27225821 [TBL] [Abstract][Full Text] [Related]
27. In situ label-free monitoring of human adipose-derived mesenchymal stem cell differentiation into multiple lineages. Suhito IR; Han Y; Min J; Son H; Kim TH Biomaterials; 2018 Feb; 154():223-233. PubMed ID: 29132047 [TBL] [Abstract][Full Text] [Related]
28. Vibrational spectroscopy and imaging: applications for tissue engineering. Querido W; Falcon JM; Kandel S; Pleshko N Analyst; 2017 Oct; 142(21):4005-4017. PubMed ID: 28956032 [TBL] [Abstract][Full Text] [Related]
30. [The latest development of the research on Chinese medicine by molecular vibrational spectroscopy]. Sun S; Zhou Q; Yu J; Hu X Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Apr; 20(2):199-202. PubMed ID: 12953487 [TBL] [Abstract][Full Text] [Related]
31. Applications of mid-infrared spectroscopy in the clinical laboratory setting. De Bruyne S; Speeckaert MM; Delanghe JR Crit Rev Clin Lab Sci; 2018 Jan; 55(1):1-20. PubMed ID: 29239240 [TBL] [Abstract][Full Text] [Related]
32. Microspectroscopy of spectral biomarkers associated with human corneal stem cells. Nakamura T; Kelly JG; Trevisan J; Cooper LJ; Bentley AJ; Carmichael PL; Scott AD; Cotte M; Susini J; Martin-Hirsch PL; Kinoshita S; Fullwood NJ; Martin FL Mol Vis; 2010 Mar; 16():359-68. PubMed ID: 20520745 [TBL] [Abstract][Full Text] [Related]
33. Advanced imaging approaches for regenerative medicine: Emerging technologies for monitoring stem cell fate in vitro and in vivo. Kupfer ME; Ogle BM Biotechnol J; 2015 Oct; 10(10):1515-28. PubMed ID: 26228468 [TBL] [Abstract][Full Text] [Related]
34. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review. Bunaciu AA; Hoang VD; Aboul-Enein HY Crit Rev Anal Chem; 2017 May; 47(3):194-203. PubMed ID: 27786540 [TBL] [Abstract][Full Text] [Related]
35. Infrared and Raman imaging for characterizing complex biological materials: a comparative morpho-spectroscopic study of colon tissue. Nallala J; Piot O; Diebold MD; Gobinet C; Bouché O; Manfait M; Sockalingum GD Appl Spectrosc; 2014; 68(1):57-68. PubMed ID: 24405955 [TBL] [Abstract][Full Text] [Related]
36. Role of artificial intelligence and vibrational spectroscopy in cancer diagnostics. Rehman IU; Khan RS; Rehman S Expert Rev Mol Diagn; 2020 Aug; 20(8):749-755. PubMed ID: 32544359 [TBL] [Abstract][Full Text] [Related]
37. Raman spectroscopy assisted tear analysis: A label free, optical approach for noninvasive disease diagnostics. Thomas KM; Ajithaprasad S; N M; Pavithran M S; Chidangil S; Lukose J Exp Eye Res; 2024 Jun; 243():109913. PubMed ID: 38679225 [TBL] [Abstract][Full Text] [Related]
38. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Mao W; Bui HD; Cho W; Yoo HS Adv Drug Deliv Rev; 2023 Oct; 201():115074. PubMed ID: 37619771 [TBL] [Abstract][Full Text] [Related]
39. Isolating stem cells in the inter-follicular epidermis employing synchrotron radiation-based Fourier-transform infrared microspectroscopy and focal plane array imaging. Patel II; Harrison WJ; Kerns JG; Filik J; Wehbe K; Carmichael PL; Scott AD; Philpott MP; Frogley MD; Cinque G; Martin FL Anal Bioanal Chem; 2012 Oct; 404(6-7):1745-58. PubMed ID: 22945554 [TBL] [Abstract][Full Text] [Related]
40. Molecular Fingerprint Detection Using Raman and Infrared Spectroscopy Technologies for Cancer Detection: A Progress Review. Zhang S; Qi Y; Tan SPH; Bi R; Olivo M Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232918 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]