BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 33256828)

  • 21. CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger.
    Ahmad S; Tang L; Shahzad R; Mawia AM; Rao GS; Jamil S; Wei C; Sheng Z; Shao G; Wei X; Hu P; Mahfouz MM; Hu S; Tang S
    J Agric Food Chem; 2021 Aug; 69(30):8307-8323. PubMed ID: 34288688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges.
    Sufyan M; Daraz U; Hyder S; Zulfiqar U; Iqbal R; Eldin SM; Rafiq F; Mahmood N; Shahzad K; Uzair M; Fiaz S; Ali I
    Funct Integr Genomics; 2023 Apr; 23(2):119. PubMed ID: 37022538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome Editing: Targeting Susceptibility Genes for Plant Disease Resistance.
    Zaidi SS; Mukhtar MS; Mansoor S
    Trends Biotechnol; 2018 Sep; 36(9):898-906. PubMed ID: 29752192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome editing for crop improvement: Challenges and opportunities.
    Abdallah NA; Prakash CS; McHughen AG
    GM Crops Food; 2015; 6(4):183-205. PubMed ID: 26930114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A critical look on CRISPR-based genome editing in plants.
    Ahmad N; Rahman MU; Mukhtar Z; Zafar Y; Zhang B
    J Cell Physiol; 2020 Feb; 235(2):666-682. PubMed ID: 31317541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis.
    Adeyinka OS; Tabassum B; Koloko BL; Ogungbe IV
    Planta; 2023 Mar; 257(4):78. PubMed ID: 36913066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards CRISPR/Cas crops - bringing together genomics and genome editing.
    Scheben A; Wolter F; Batley J; Puchta H; Edwards D
    New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato.
    Tran MT; Doan DTH; Kim J; Song YJ; Sung YW; Das S; Kim EJ; Son GH; Kim SH; Van Vu T; Kim JY
    Plant Cell Rep; 2021 Jun; 40(6):999-1011. PubMed ID: 33074435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas-based tools for the targeted control of plant viruses.
    Robertson G; Burger J; Campa M
    Mol Plant Pathol; 2022 Nov; 23(11):1701-1718. PubMed ID: 35920132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From plant immunity to crop disease resistance.
    Zhao Y; Zhu X; Chen X; Zhou JM
    J Genet Genomics; 2022 Aug; 49(8):693-703. PubMed ID: 35728759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9-Mediated Generation of Pathogen-Resistant Tomato against
    Pramanik D; Shelake RM; Park J; Kim MJ; Hwang I; Park Y; Kim JY
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33668636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR Genome Editing Technology: A Powerful Tool Applied to Developing Agribusiness.
    Maximiano MR; Távora FTPK; Prado GS; Dias SC; Mehta A; Franco OL
    J Agric Food Chem; 2021 Jun; 69(23):6379-6395. PubMed ID: 34097395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants.
    Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S
    Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances.
    Soda N; Verma L; Giri J
    Plant Physiol Biochem; 2018 Oct; 131():2-11. PubMed ID: 29103811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering plant virus resistance: from RNA silencing to genome editing strategies.
    Zhao Y; Yang X; Zhou G; Zhang T
    Plant Biotechnol J; 2020 Feb; 18(2):328-336. PubMed ID: 31618513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.