BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33256984)

  • 21. E-selectin ligand 1 regulates bone remodeling by limiting bioactive TGF-β in the bone microenvironment.
    Yang T; Grafe I; Bae Y; Chen S; Chen Y; Bertin TK; Jiang MM; Ambrose CG; Lee B
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7336-41. PubMed ID: 23589896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TGF-β induced PAR-1 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone.
    Wang T; Jiao J; Zhang H; Zhou W; Li Z; Han S; Wang J; Yang X; Huang Q; Wu Z; Yan W; Xiao J
    Int J Cancer; 2017 Oct; 141(8):1630-1642. PubMed ID: 28670703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coculture of osteoclast precursors with rheumatoid synovial fibroblasts induces osteoclastogenesis via transforming growth factor beta-mediated down-regulation of osteoprotegerin.
    Hase H; Kanno Y; Kojima H; Sakurai D; Kobata T
    Arthritis Rheum; 2008 Nov; 58(11):3356-65. PubMed ID: 18975335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo.
    Kim JY; Min JY; Baek JM; Ahn SJ; Jun HY; Yoon KH; Choi MK; Lee MS; Oh J
    Bone; 2015 Oct; 79():242-51. PubMed ID: 26103094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis.
    Meng X; Vander Ark A; Daft P; Woodford E; Wang J; Madaj Z; Li X
    Cancer Lett; 2018 Apr; 418():109-118. PubMed ID: 29337106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of tumor cell-derived TGF-β on macrophage phenotype and macrophage-mediated tumor cell invasion.
    Maldonado LAG; Nascimento CR; Rodrigues Fernandes NA; Silva ALP; D'Silva NJ; Rossa C
    Int J Biochem Cell Biol; 2022 Dec; 153():106330. PubMed ID: 36343916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TGF-β Negatively Regulates Mitf-E Expression and Canine Osteoclastogenesis.
    Asai K; Hisasue M; Shimokawa F; Funaba M; Murakami M
    Biochem Genet; 2018 Oct; 56(5):542-552. PubMed ID: 29680988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development.
    Yin JJ; Selander K; Chirgwin JM; Dallas M; Grubbs BG; Wieser R; Massagué J; Mundy GR; Guise TA
    J Clin Invest; 1999 Jan; 103(2):197-206. PubMed ID: 9916131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation.
    Karst M; Gorny G; Galvin RJ; Oursler MJ
    J Cell Physiol; 2004 Jul; 200(1):99-106. PubMed ID: 15137062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubule actin crosslinking factor 1 (MACF1) knockdown inhibits RANKL-induced osteoclastogenesis via Akt/GSK3β/NFATc1 signalling pathway.
    Lin X; Xiao Y; Chen Z; Ma J; Qiu W; Zhang K; Xu F; Dang K; Qian A
    Mol Cell Endocrinol; 2019 Aug; 494():110494. PubMed ID: 31260729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oleanolic acid exerts inhibitory effects on the late stage of osteoclastogenesis and prevents bone loss in osteoprotegerin knockout mice.
    Zhao D; Shu B; Wang C; Zhao Y; Cheng W; Sha N; Li C; Wang Q; Lu S; Wang Y
    J Cell Biochem; 2020 Jan; 121(1):152-164. PubMed ID: 31318102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of insulin-like growth factor binding proteins and regulation of IGFBP3 in human mesangial cells.
    Grellier P; Sabbah M; Fouqueray B; Woodruff K; Yee D; Abboud HE; Abboud SL
    Kidney Int; 1996 Apr; 49(4):1071-8. PubMed ID: 8691727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice.
    Kim SD; Kim HN; Lee JH; Jin WJ; Hwang SJ; Kim HH; Ha H; Lee ZH
    Biochem Pharmacol; 2013 Sep; 86(6):782-90. PubMed ID: 23928189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The inhibition of RANKL/RANK signaling by osteoprotegerin suppresses bone invasion by oral squamous cell carcinoma cells.
    Shin M; Matsuo K; Tada T; Fukushima H; Furuta H; Ozeki S; Kadowaki T; Yamamoto K; Okamoto M; Jimi E
    Carcinogenesis; 2011 Nov; 32(11):1634-40. PubMed ID: 21890459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RANKL synthesized by both stromal cells and cancer cells plays a crucial role in osteoclastic bone resorption induced by oral cancer.
    Sato K; Lee JW; Sakamoto K; Iimura T; Kayamori K; Yasuda H; Shindoh M; Ito M; Omura K; Yamaguchi A
    Am J Pathol; 2013 May; 182(5):1890-9. PubMed ID: 23499553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts.
    Tada T; Jimi E; Okamoto M; Ozeki S; Okabe K
    Int J Cancer; 2005 Aug; 116(2):253-62. PubMed ID: 15800904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishment of a xenograft model to explore the mechanism of bone destruction by human oral cancers and its application to analysis of role of RANKL.
    Tohyama R; Kayamori K; Sato K; Hamagaki M; Sakamoto K; Yasuda H; Yamaguchi A
    J Oral Pathol Med; 2016 May; 45(5):356-64. PubMed ID: 26859422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-beta by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts.
    Takuma A; Kaneda T; Sato T; Ninomiya S; Kumegawa M; Hakeda Y
    J Biol Chem; 2003 Nov; 278(45):44667-74. PubMed ID: 12944401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF-beta). Mapping of the OPG promoter region that mediates TGF-beta effects.
    Thirunavukkarasu K; Miles RR; Halladay DL; Yang X; Galvin RJ; Chandrasekhar S; Martin TJ; Onyia JE
    J Biol Chem; 2001 Sep; 276(39):36241-50. PubMed ID: 11451955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-mobility group box 1 induces bone destruction associated with advanced oral squamous cancer via RAGE and TLR4.
    Sakamoto Y; Okui T; Yoneda T; Ryumon S; Nakamura T; Kawai H; Kunisada Y; Ibaragi S; Masui M; Ono K; Obata K; Shimo T; Sasaki A
    Biochem Biophys Res Commun; 2020 Oct; 531(3):422-430. PubMed ID: 32800556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.