BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 33256987)

  • 1. Tryptophan Metabolism as a Pharmacological Target.
    Modoux M; Rolhion N; Mani S; Sokol H
    Trends Pharmacol Sci; 2021 Jan; 42(1):60-73. PubMed ID: 33256987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate.
    Heyes MP; Saito K; Major EO; Milstien S; Markey SP; Vickers JH
    Brain; 1993 Dec; 116 ( Pt 6)():1425-50. PubMed ID: 8293279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kynurenine pathway metabolism and immune activation: Peripheral measurements in psychiatric and co-morbid conditions.
    Strasser B; Becker K; Fuchs D; Gostner JM
    Neuropharmacology; 2017 Jan; 112(Pt B):286-296. PubMed ID: 26924709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway.
    Thomas SR; Stocker R
    Redox Rep; 1999; 4(5):199-220. PubMed ID: 10731095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IDO and TDO as a potential therapeutic target in different types of depression.
    Qin Y; Wang N; Zhang X; Han X; Zhai X; Lu Y
    Metab Brain Dis; 2018 Dec; 33(6):1787-1800. PubMed ID: 30014175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases.
    Lovelace MD; Varney B; Sundaram G; Lennon MJ; Lim CK; Jacobs K; Guillemin GJ; Brew BJ
    Neuropharmacology; 2017 Jan; 112(Pt B):373-388. PubMed ID: 26995730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of tryptophan metabolism in cancers and therapeutic implications.
    Liu XH; Zhai XY
    Biochimie; 2021 Mar; 182():131-139. PubMed ID: 33460767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites.
    Terness P; Bauer TM; Röse L; Dufter C; Watzlik A; Simon H; Opelz G
    J Exp Med; 2002 Aug; 196(4):447-57. PubMed ID: 12186837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan Metabolism: A Versatile Area Providing Multiple Targets for Pharmacological Intervention.
    Badawy AA
    Egypt J Basic Clin Pharmacol; 2019; 9():. PubMed ID: 31105983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Radiosynthesis and Biological Evaluations of L- and D-1-[
    Xin Y; Cai H
    Mol Imaging Biol; 2017 Aug; 19(4):589-598. PubMed ID: 27815661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species differences in L-tryptophan-kynurenine pathway metabolism: quantification of anthranilic acid and its related enzymes.
    Fujigaki S; Saito K; Takemura M; Fujii H; Wada H; Noma A; Seishima M
    Arch Biochem Biophys; 1998 Oct; 358(2):329-35. PubMed ID: 9784247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan metabolism was accelerated by exercise in rat.
    Ito Y; Yonekura R; Maruta K; Koike T; Nakagami Y; Shibata K; Saito K; Nagamura Y
    Adv Exp Med Biol; 2003; 527():531-5. PubMed ID: 15206771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase 1 make separate, tissue-specific contributions to basal and inflammation-induced kynurenine pathway metabolism in mice.
    Larkin PB; Sathyasaikumar KV; Notarangelo FM; Funakoshi H; Nakamura T; Schwarcz R; Muchowski PJ
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt A):2345-2354. PubMed ID: 27392942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the aryl hydrocarbon receptor and the intrinsic tumoral component of the kynurenine pathway of tryptophan metabolism in primary brain tumors.
    Guastella AR; Michelhaugh SK; Klinger NV; Fadel HA; Kiousis S; Ali-Fehmi R; Kupsky WJ; Juhász C; Mittal S
    J Neurooncol; 2018 Sep; 139(2):239-249. PubMed ID: 29667084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring tryptophan metabolism in chronic immune activation.
    Schröcksnadel K; Wirleitner B; Winkler C; Fuchs D
    Clin Chim Acta; 2006 Feb; 364(1-2):82-90. PubMed ID: 16139256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders.
    Kondo T; Okada Y; Shizuya S; Yamaguchi N; Hatakeyama S; Maruyama K
    Eur J Cell Biol; 2024 Jun; 103(2):151418. PubMed ID: 38729083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia.
    Saito K; Nowak TS; Markey SP; Heyes MP
    J Neurochem; 1993 Jan; 60(1):180-92. PubMed ID: 8417138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic and product induction of the enzymes of tryptophan metabolism in Pseudomonas acidovorans.
    Rosenfeld H; Feigelson P
    J Bacteriol; 1969 Feb; 97(2):697-704. PubMed ID: 5773024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Kynurenine Pathway: A Primary Resistance Mechanism in Patients with Glioblastoma.
    Sordillo PP; Sordillo LA; Helson L
    Anticancer Res; 2017 May; 37(5):2159-2171. PubMed ID: 28476779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorine-18-Labeled PET Radiotracers for Imaging Tryptophan Uptake and Metabolism: a Systematic Review.
    John F; Muzik O; Mittal S; Juhász C
    Mol Imaging Biol; 2020 Aug; 22(4):805-819. PubMed ID: 31512038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.