These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33257208)

  • 1. Spatial Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    J Voice; 2023 Jan; 37(1):26-36. PubMed ID: 33257208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    J Speech Lang Hear Res; 2022 Jun; 65(6):2098-2113. PubMed ID: 35605603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech.
    Naghibolhosseini M; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF
    J Voice; 2018 Mar; 32(2):256.e1-256.e12. PubMed ID: 28647431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Machine-Learning-Based Method for Analytic Representation of the Vocal Fold Edges during Connected Speech.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    Appl Sci (Basel); 2021 Feb; 11(3):. PubMed ID: 33717604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Vocal Fold Image Obstructions in High-Speed Videoendoscopy During Connected Speech in Adductor Spasmodic Dysphonia: A Convolutional Neural Networks Approach.
    Yousef AM; Deliyski DD; Zacharias SRC; Naghibolhosseini M
    J Voice; 2024 Jul; 38(4):951-962. PubMed ID: 35304042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laryngeal High-Speed Videoendoscopy with Laser Illumination: A Preliminary Report.
    Malinowski J; Niebudek-Bogusz E; Just M; Morawska J; Racino A; Hoffman J; Barańska M; Kowalczyk MM; Pietruszewska W
    Otolaryngol Pol; 2021 Sep; 75(6):1-10. PubMed ID: 35175220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-Learning-Based Representation of Vocal Fold Dynamics in Adductor Spasmodic Dysphonia during Connected Speech in High-Speed Videoendoscopy.
    Yousef AM; Deliyski DD; Zacharias SRC; Naghibolhosseini M
    J Voice; 2022 Sep; ():. PubMed ID: 36154973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Deep Learning-Based Vocal Fold Disorder Detection and Classification Model on High-Speed Video Endoscopy.
    Sakthivel S; Prabhu V
    J Healthc Eng; 2022; 2022():4248938. PubMed ID: 36353680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of spatial camera resolution in high-speed videoendoscopy on laryngeal parameters.
    Schlegel P; Kunduk M; Stingl M; Semmler M; Döllinger M; Bohr C; Schützenberger A
    PLoS One; 2019; 14(4):e0215168. PubMed ID: 31009488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preprocessing techniques for high-speed videoendoscopy analysis.
    Ikuma T; Kunduk M; McWhorter AJ
    J Voice; 2013 Jul; 27(4):500-5. PubMed ID: 23490125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network.
    Fehling MK; Grosch F; Schuster ME; Schick B; Lohscheller J
    PLoS One; 2020; 15(2):e0227791. PubMed ID: 32040514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic multi-line kymographic analysis: A spatiotemporal data reduction technique for high-speed videoendoscopy.
    Ikuma T; Kunduk M; Fink D; McWhorter AJ
    J Acoust Soc Am; 2016 Oct; 140(4):2703. PubMed ID: 27794340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relating Cepstral Peak Prominence to Cyclical Parameters of Vocal Fold Vibration from High-Speed Videoendoscopy Using Machine Learning: A Pilot Study.
    Popolo PS; Johnson AM
    J Voice; 2021 Sep; 35(5):703-716. PubMed ID: 32173147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.
    Mehta DD; Deliyski DD; Quatieri TF; Hillman RE
    J Speech Lang Hear Res; 2011 Feb; 54(1):47-54. PubMed ID: 20699347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intersegmenter Variability in High-Speed Laryngoscopy-Based Glottal Area Waveform Measures.
    Maryn Y; Verguts M; Demarsin H; van Dinther J; Gomez P; Schlegel P; Döllinger M
    Laryngoscope; 2020 Nov; 130(11):E654-E661. PubMed ID: 31840827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Objective quantification of pre- and postphonosurgery vocal fold vibratory characteristics using high-speed videoendoscopy and a harmonic waveform model.
    Ikuma T; Kunduk M; McWhorter AJ
    J Speech Lang Hear Res; 2014 Jun; 57(3):743-57. PubMed ID: 24167233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Learning Enhanced Novel Software Tool for Laryngeal Dynamics Analysis.
    Kist AM; Gómez P; Dubrovskiy D; Schlegel P; Kunduk M; Echternach M; Patel R; Semmler M; Bohr C; Dürr S; Schützenberger A; Döllinger M
    J Speech Lang Hear Res; 2021 Jun; 64(6):1889-1903. PubMed ID: 34000199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphical evaluation of vocal fold vibratory patterns by high-speed videolaryngoscopy.
    Pinheiro AP; Dajer ME; Hachiya A; Montagnoli AN; Tsuji D
    J Voice; 2014 Jan; 28(1):106-11. PubMed ID: 24275457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibratory Onset of Adductor Spasmodic Dysphonia and Muscle Tension Dysphonia: A High-Speed Video Study✰.
    Chen W; Woo P; Murry T
    J Voice; 2020 Jul; 34(4):598-603. PubMed ID: 30595236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of Laryngeal High-speed Videoendoscopy in Clinical Voice Assessment.
    Zacharias SRC; Deliyski DD; Gerlach TT
    J Voice; 2018 Mar; 32(2):216-220. PubMed ID: 28596101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.