BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33257209)

  • 21. Evaluation of Left Main Coronary Artery Using Optical Frequency Domain Imaging and Its Pitfalls.
    Roule V; Rebouh I; Lemaitre A; Bignon M; Ardouin P; Sabatier R; Labombarda F; Blanchart K; Beygui F
    J Interv Cardiol; 2020; 2020():4817239. PubMed ID: 32581660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology.
    Rieber J; Meissner O; Babaryka G; Reim S; Oswald M; Koenig A; Schiele TM; Shapiro M; Theisen K; Reiser MF; Klauss V; Hoffmann U
    Coron Artery Dis; 2006 Aug; 17(5):425-30. PubMed ID: 16845250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques.
    Shimokado A; Matsuo Y; Kubo T; Nishiguchi T; Taruya A; Teraguchi I; Shiono Y; Orii M; Tanimoto T; Yamano T; Ino Y; Hozumi T; Tanaka A; Muragaki Y; Akasaka T
    Atherosclerosis; 2018 Aug; 275():35-42. PubMed ID: 29859471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical frequency domain imaging of ex vivo pulmonary resection specimens: obtaining one to one image to histopathology correlation.
    Hariri LP; Applegate MB; Mino-Kenudson M; Mark EJ; Bouma BE; Tearney GJ; Suter MJ
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23381470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI.
    Jiang Y; Zhu C; Peng W; Degnan AJ; Chen L; Wang X; Liu Q; Wang Y; Xiang Z; Teng Z; Saloner D; Lu J
    Atherosclerosis; 2016 Jun; 249():10-6. PubMed ID: 27062404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Ex vivo assessment of coronary lesions by optical coherence tomography and intravascular ultrasound in comparison with histology results].
    Guo J; Sun L; Chen YD; Tian F; Liu HB; Chen L; Sun ZJ; Ren YH; Jin QH; Liu CF; Han BS; Gai LY; Yang TS
    Zhonghua Xin Xue Guan Bing Za Zhi; 2012 Apr; 40(4):302-6. PubMed ID: 22801308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plaque burden can be assessed using intravascular optical coherence tomography and a dedicated automated processing algorithm: a comparison study with intravascular ultrasound.
    Gerbaud E; Weisz G; Tanaka A; Luu R; Osman HASH; Baldwin G; Coste P; Cognet L; Waxman S; Zheng H; Moses JW; Mintz GS; Akasaka T; Maehara A; Tearney GJ
    Eur Heart J Cardiovasc Imaging; 2020 Jun; 21(6):640-652. PubMed ID: 31326995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison Between Optical Frequency Domain Imaging and Intravascular Ultrasound for Percutaneous Coronary Intervention Guidance in Biolimus A9-Eluting Stent Implantation: A Randomized MISTIC-1 Non-Inferiority Trial.
    Muramatsu T; Ozaki Y; Nanasato M; Ishikawa M; Nagasaka R; Ohota M; Hashimoto Y; Yoshiki Y; Takatsu H; Ito K; Kamiya H; Yoshida Y; Murohara T; Izawa H;
    Circ Cardiovasc Interv; 2020 Nov; 13(11):e009314. PubMed ID: 33106049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eicosapentaenoic acid therapy is associated with decreased coronary plaque instability assessed using optical frequency domain imaging.
    Konishi T; Sunaga D; Funayama N; Yamamoto T; Murakami H; Hotta D; Nojima M; Tanaka S
    Clin Cardiol; 2019 Jun; 42(6):618-628. PubMed ID: 30993750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of the debulking effect of rotational atherectomy using optical frequency domain imaging.
    Tanimura K; Otake H; Kawamori H; Toba T; Nagasawa A; Sugizaki Y; Takeshige R; Nakano S; Matsuoka Y; Takahashi Y; Fukuyama Y; Hirata KI
    Heart Vessels; 2021 Sep; 36(9):1265-1274. PubMed ID: 33830314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diagnostic Accuracy of Optical Frequency Domain Imaging for Identifying Necrotic Cores with Intraplaque Hemorrhage in Advanced Human Carotid Plaques.
    Shibutani H; Fujii K; Shirakawa M; Uchida K; Yamada K; Kawakami R; Imanaka T; Kawai K; Hashimoto K; Matsumura K; Hao H; Hirota S; Shiojima I; Yoshimura S
    Am J Cardiol; 2021 Oct; 156():123-128. PubMed ID: 34344514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative precision of optical frequency domain imaging: direct comparison with frequency domain optical coherence tomography and intravascular ultrasound.
    Kobayashi Y; Kitahara H; Tanaka S; Okada K; Kimura T; Ikeno F; Yock PG; Fitzgerald PJ; Honda Y
    Cardiovasc Interv Ther; 2016 Apr; 31(2):79-88. PubMed ID: 26271203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability.
    Jinnouchi H; Sato Y; Sakamoto A; Cornelissen A; Mori M; Kawakami R; Gadhoke NV; Kolodgie FD; Virmani R; Finn AV
    Atherosclerosis; 2020 Aug; 306():85-95. PubMed ID: 32654790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Obstructive sleep apnea is associated with increased coronary plaque instability: an optical frequency domain imaging study.
    Konishi T; Kashiwagi Y; Funayama N; Yamamoto T; Murakami H; Hotta D; Tanaka S
    Heart Vessels; 2019 Aug; 34(8):1266-1279. PubMed ID: 30790035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intravascular imaging and histological correlates of medial and intimal calcification in peripheral artery disease.
    Jinnouchi H; Sato Y; Bhoite RR; Kuntz SH; Sakamoto A; Kutyna M; Torii S; Mori M; Kawakami R; Amoa FC; Kolodgie FD; Virmani R; Finn AV
    EuroIntervention; 2021 Oct; 17(8):e688-e698. PubMed ID: 33896763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plaque burden influences accurate classification of fibrous cap atheroma by in vivo optical coherence tomography in a porcine model of advanced coronary atherosclerosis.
    Poulsen CB; Pedrigi RM; Pareek N; Kilic ID; Holm NR; Bentzon JF; Bøtker HE; Falk E; Krams R; de Silva R
    EuroIntervention; 2018 Nov; 14(10):1129-1135. PubMed ID: 29616625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography.
    Hetterich H; Webber N; Willner M; Herzen J; Birnbacher L; Hipp A; Marschner M; Auweter SD; Habbel C; Schüller U; Bamberg F; Ertl-Wagner B; Pfeiffer F; Saam T
    Eur Radiol; 2016 Sep; 26(9):3223-33. PubMed ID: 26679184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro.
    Goderie TP; van Soest G; Garcia-Garcia HM; Gonzalo N; Koljenović S; van Leenders GJ; Mastik F; Regar E; Oosterhuis JW; Serruys PW; van der Steen AF
    Int J Cardiovasc Imaging; 2010 Dec; 26(8):843-50. PubMed ID: 20396951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.