These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33257652)

  • 1. Sound generation in zebrafish with Bio-Opto-Acoustics.
    Favre-Bulle IA; Taylor MA; Marquez-Legorreta E; Vanwalleghem G; Poulsen RE; Rubinsztein-Dunlop H; Scott EK
    Nat Commun; 2020 Nov; 11(1):6120. PubMed ID: 33257652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS).
    Curthoys IS; Vulovic V; Burgess AM; Sokolic L; Goonetilleke SC
    Hear Res; 2016 Jan; 331():131-43. PubMed ID: 26626360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound.
    Curthoys IS; Vulovic V; Sokolic L; Pogson J; Burgess AM
    Brain Res Bull; 2012 Oct; 89(1-2):16-21. PubMed ID: 22814095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish.
    Riley BB; Moorman SJ
    J Neurobiol; 2000 Jun; 43(4):329-37. PubMed ID: 10861559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.
    Curthoys IS; Vulovic V; Burgess AM; Manzari L; Sokolic L; Pogson J; Robins M; Mezey LE; Goonetilleke S; Cornell ED; MacDougall HG
    Clin Exp Pharmacol Physiol; 2014 May; 41(5):371-80. PubMed ID: 24754528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory chain reaction: Effects of sound pressure and particle motion on auditory structures in fishes.
    Schulz-Mirbach T; Ladich F; Mittone A; Olbinado M; Bravin A; Maiditsch IP; Melzer RR; Krysl P; Heß M
    PLoS One; 2020; 15(3):e0230578. PubMed ID: 32218605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular-Resolution Imaging of Vestibular Processing across the Larval Zebrafish Brain.
    Favre-Bulle IA; Vanwalleghem G; Taylor MA; Rubinsztein-Dunlop H; Scott EK
    Curr Biol; 2018 Dec; 28(23):3711-3722.e3. PubMed ID: 30449665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
    Curthoys IS; Kim J; McPhedran SK; Camp AJ
    Exp Brain Res; 2006 Nov; 175(2):256-67. PubMed ID: 16761136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic actuation of otoliths allows behavioral and brain-wide neuronal exploration of vestibulo-motor processing in larval zebrafish.
    Beiza-Canelo N; Moulle H; Pujol T; Panier T; Migault G; Le Goc G; Tapie P; Desprat N; Straka H; Debrégeas G; Bormuth V
    Curr Biol; 2023 Jun; 33(12):2438-2448.e6. PubMed ID: 37285844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broad frequency sensitivity and complex neural coding in the larval zebrafish auditory system.
    Poulsen RE; Scholz LA; Constantin L; Favre-Bulle I; Vanwalleghem GC; Scott EK
    Curr Biol; 2021 May; 31(9):1977-1987.e4. PubMed ID: 33657408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to cadmium causes inhibition of otolith development and behavioral impairment in zebrafish larvae.
    Han J; Liu K; Wang R; Zhang Y; Zhou B
    Aquat Toxicol; 2019 Sep; 214():105236. PubMed ID: 31260825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The basis for using bone-conducted vibration or air-conducted sound to test otolithic function.
    Curthoys IS; Vulovic V; Burgess AM; Cornell ED; Mezey LE; Macdougall HG; Manzari L; McGarvie LA
    Ann N Y Acad Sci; 2011 Sep; 1233():231-41. PubMed ID: 21950999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical trapping of otoliths drives vestibular behaviours in larval zebrafish.
    Favre-Bulle IA; Stilgoe AB; Rubinsztein-Dunlop H; Scott EK
    Nat Commun; 2017 Sep; 8(1):630. PubMed ID: 28931814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibular primary afferent responses to sound and vibration in the guinea pig.
    Curthoys IS; Vulovic V
    Exp Brain Res; 2011 May; 210(3-4):347-52. PubMed ID: 21113779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats.
    Huang J; Tang X; Xu Y; Zhang C; Chen T; Yu Y; Mustain W; Allison J; Iversen MM; Rabbitt RD; Zhou W; Zhu H
    J Assoc Res Otolaryngol; 2022 Jun; 23(3):435-453. PubMed ID: 35378621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of ear stone size in hair cell acoustic sensory transduction.
    Inoue M; Tanimoto M; Oda Y
    Sci Rep; 2013; 3():2114. PubMed ID: 23817603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sound World of Zebrafish: A Critical Review of Hearing Assessment.
    Popper AN; Sisneros JA
    Zebrafish; 2022 Apr; 19(2):37-48. PubMed ID: 35439045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical modeling of the impacts of acoustic stimulus on fish otoliths from two directions.
    Wei C; McCauley RD
    J Acoust Soc Am; 2022 Dec; 152(6):3226. PubMed ID: 36586842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae).
    Schulz-Mirbach T; Ladich F; Riesch R; Plath M
    Hear Res; 2010 Aug; 267(1-2):137-48. PubMed ID: 20430090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound shock response in larval zebrafish: A convenient and high-throughput assessment of auditory function.
    Liu X; Lin J; Zhang Y; Guo N; Li Q
    Neurotoxicol Teratol; 2018; 66():1-7. PubMed ID: 29330026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.