These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33257750)

  • 1. Validation of pore network modeling for determination of two-phase transport in fibrous porous media.
    Huang X; Zhou W; Deng D
    Sci Rep; 2020 Nov; 10(1):20852. PubMed ID: 33257750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark cases for a multi-component Lattice-Boltzmann method in hydrostatic conditions.
    Montellà EP; Chareyre B; Salager S; Gens A
    MethodsX; 2020; 7():101090. PubMed ID: 33194560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography.
    Sukop MC; Huang H; Lin CL; Deo MD; Oh K; Miller JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026710. PubMed ID: 18352151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core.
    Song R; Liu J; Cui M
    Springerplus; 2016; 5(1):817. PubMed ID: 27390657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore-scale modeling of two-phase flow: A comparison of the generalized network model to direct numerical simulation.
    Giudici LM; Raeini AQ; Akai T; Blunt MJ; Bijeljic B
    Phys Rev E; 2023 Mar; 107(3-2):035107. PubMed ID: 37073001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann modeling of interfacial mass transfer in a multiphase system.
    Yang JY; Dai XY; Xu QH; Liu ZY; Shi L; Long W
    Phys Rev E; 2021 Jul; 104(1-2):015307. PubMed ID: 34412297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media.
    Raeini AQ; Bijeljic B; Blunt MJ
    Phys Rev E; 2017 Jul; 96(1-1):013312. PubMed ID: 29347276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models.
    Huang H; Krafczyk M; Lu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046710. PubMed ID: 22181310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking continuum-scale state of wetting to pore-scale contact angles in porous media.
    Sun C; McClure JE; Mostaghimi P; Herring AL; Shabaninejad M; Berg S; Armstrong RT
    J Colloid Interface Sci; 2020 Mar; 561():173-180. PubMed ID: 31812863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore-network extraction using discrete Morse theory: Preserving the topology of the pore space.
    Zubov AS; Murygin DA; Gerke KM
    Phys Rev E; 2022 Nov; 106(5-2):055304. PubMed ID: 36559419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Pore Network Modeling of Imbibition in Real Porous Media with Corner Film Flow.
    Zhao J; Zhang G; Wu K; Qin F; Fei L; Derome D; Carmeliet J
    Langmuir; 2024 Apr; 40(14):7364-7374. PubMed ID: 38544367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile and efficient pore network extraction method using marker-based watershed segmentation.
    Gostick JT
    Phys Rev E; 2017 Aug; 96(2-1):023307. PubMed ID: 28950550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media.
    Arshadi M; Gesho M; Qin T; Goual L; Piri M
    J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems.
    Chen L; Kang Q; Robinson BA; He YL; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043306. PubMed ID: 23679547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pore-scale investigation of a multiphase porous media system.
    Al-Raoush RI; Willson CS
    J Contam Hydrol; 2005 Mar; 77(1-2):67-89. PubMed ID: 15722173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive transport in porous media: pore-network model approach compared to pore-scale model.
    Varloteaux C; Vu MT; Békri S; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023010. PubMed ID: 23496613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive comparison of pore-scale models for multiphase flow in porous media.
    Zhao B; MacMinn CW; Primkulov BK; Chen Y; Valocchi AJ; Zhao J; Kang Q; Bruning K; McClure JE; Miller CT; Fakhari A; Bolster D; Hiller T; Brinkmann M; Cueto-Felgueroso L; Cogswell DA; Verma R; Prodanović M; Maes J; Geiger S; Vassvik M; Hansen A; Segre E; Holtzman R; Yang Z; Yuan C; Chareyre B; Juanes R
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13799-13806. PubMed ID: 31227608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-Dependent Pore Deformation Effects on Multiphase Flow Properties of Porous Media.
    Haghi AH; Chalaturnyk R; Talman S
    Sci Rep; 2019 Oct; 9(1):15004. PubMed ID: 31628400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.