These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33257794)
1. Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Liu Q; Wan K; Shang Y; Wang ZG; Zhang Y; Dai L; Wang C; Wang H; Shi X; Liu D; Ding B Nat Mater; 2021 Mar; 20(3):395-402. PubMed ID: 33257794 [TBL] [Abstract][Full Text] [Related]
2. Molecular co-assembly of multicomponent peptides for the generation of nanomaterials with improved peroxidase activities. Zhang Y; Li X J Mater Chem B; 2023 May; 11(17):3898-3906. PubMed ID: 37039513 [TBL] [Abstract][Full Text] [Related]
3. Self-Assembled DNA/Peptide-Based Nanoparticle Exhibiting Synergistic Enzymatic Activity. Liu Q; Wang H; Shi X; Wang ZG; Ding B ACS Nano; 2017 Jul; 11(7):7251-7258. PubMed ID: 28657711 [TBL] [Abstract][Full Text] [Related]
4. Enzyme Mimic Based on a Self-Assembled Chitosan/DNA Hybrid Exhibits Superior Activity and Tolerance. Wang ZG; Li Y; Wang H; Wan K; Liu Q; Shi X; Ding B Chemistry; 2019 Sep; 25(54):12576-12582. PubMed ID: 31314132 [TBL] [Abstract][Full Text] [Related]
5. Optimization of Fe Fan K; Wang H; Xi J; Liu Q; Meng X; Duan D; Gao L; Yan X Chem Commun (Camb); 2016 Dec; 53(2):424-427. PubMed ID: 27959363 [TBL] [Abstract][Full Text] [Related]
6. Haem propionates control oxidative and reductive activities of horseradish peroxidase by maintaining the correct orientation of the haem. Adak S; Banerjee RK Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):51-6. PubMed ID: 9693101 [TBL] [Abstract][Full Text] [Related]
7. A study of the horseradish peroxidase catalytic site by FTIR spectroscopy. Ingledew WJ; Rich PR Biochem Soc Trans; 2005 Aug; 33(Pt 4):886-9. PubMed ID: 16042620 [TBL] [Abstract][Full Text] [Related]
8. Enzyme-controlled self-assembly and transformation of nanostructures in a tetramethylbenzidine/horseradish peroxidase/H2O2 system. Gao L; Wu J; Gao D ACS Nano; 2011 Aug; 5(8):6736-42. PubMed ID: 21761873 [TBL] [Abstract][Full Text] [Related]
10. A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes. Yang H; Xiao J; Shi J; Shu T; Su L; Lu Q; Zhang X Chem Commun (Camb); 2018 Jan; 54(7):818-820. PubMed ID: 29313051 [TBL] [Abstract][Full Text] [Related]
11. Mimicking Horseradish Peroxidase and NADH Peroxidase by Heterogeneous Cu Wang S; Cazelles R; Liao WC; Vázquez-González M; Zoabi A; Abu-Reziq R; Willner I Nano Lett; 2017 Mar; 17(3):2043-2048. PubMed ID: 28183178 [TBL] [Abstract][Full Text] [Related]
12. The catalytic pathway of horseradish peroxidase at high resolution. Berglund GI; Carlsson GH; Smith AT; Szöke H; Henriksen A; Hajdu J Nature; 2002 May; 417(6887):463-8. PubMed ID: 12024218 [TBL] [Abstract][Full Text] [Related]
13. The peroxidase activity of cytochrome c-550 from Paracoccus versutus. Diederix RE; Ubbink M; Canters GW Eur J Biochem; 2001 Aug; 268(15):4207-16. PubMed ID: 11488914 [TBL] [Abstract][Full Text] [Related]
14. Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics. Wang Y; Zhang Z; Jia G; Zheng L; Zhao J; Cui X Chem Commun (Camb); 2019 May; 55(36):5271-5274. PubMed ID: 30993298 [TBL] [Abstract][Full Text] [Related]
15. Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide. Zhang C; Shafi R; Lampel A; MacPherson D; Pappas CG; Narang V; Wang T; Maldarelli C; Ulijn RV Angew Chem Int Ed Engl; 2017 Nov; 56(46):14511-14515. PubMed ID: 28941038 [TBL] [Abstract][Full Text] [Related]
16. Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy. Wang D; Wu H; Wang C; Gu L; Chen H; Jana D; Feng L; Liu J; Wang X; Xu P; Guo Z; Chen Q; Zhao Y Angew Chem Int Ed Engl; 2021 Feb; 60(6):3001-3007. PubMed ID: 33091204 [TBL] [Abstract][Full Text] [Related]
17. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Wang Z; Shen X; Gao X; Zhao Y Nanoscale; 2019 Jul; 11(28):13289-13299. PubMed ID: 31287483 [TBL] [Abstract][Full Text] [Related]
19. Effect of distal His mutation on the peroxynitrite reactivity of Leishmania major peroxidase. Saha R; Bose M; Santara SS; Roy J; Yadav RK; Adak S Biochim Biophys Acta; 2013 Oct; 1834(10):2057-63. PubMed ID: 23831153 [TBL] [Abstract][Full Text] [Related]
20. Chemical and kinetic evidence for an essential histidine residue in the electron transfer from aromatic donor to horseradish peroxidase compound I. Bhattacharyya DK; Bandyopadhyay U; Banerjee RK J Biol Chem; 1993 Oct; 268(30):22292-8. PubMed ID: 8226738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]