These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33258177)

  • 1. Nowcasting the COVID-19 pandemic in Bavaria.
    Günther F; Bender A; Katz K; Küchenhoff H; Höhle M
    Biom J; 2021 Mar; 63(3):490-502. PubMed ID: 33258177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic.
    Greene SK; McGough SF; Culp GM; Graf LE; Lipsitch M; Menzies NA; Kahn R
    JMIR Public Health Surveill; 2021 Jan; 7(1):e25538. PubMed ID: 33406053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian nowcasting with leading indicators applied to COVID-19 fatalities in Sweden.
    Bergström F; Günther F; Höhle M; Britton T
    PLoS Comput Biol; 2022 Dec; 18(12):e1010767. PubMed ID: 36477048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning model for nowcasting epidemic incidence.
    Sahai SY; Gurukar S; KhudaBukhsh WR; Parthasarathy S; Rempała GA
    Math Biosci; 2022 Jan; 343():108677. PubMed ID: 34848217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian back-calculation and nowcasting for line list data during the COVID-19 pandemic.
    Li T; White LF
    PLoS Comput Biol; 2021 Jul; 17(7):e1009210. PubMed ID: 34252078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delay in death reporting affects timely monitoring and modeling of the COVID-19 pandemic.
    Carvalho CA; Carvalho VA; Campos MAG; Oliveira BLCA; Diniz EM; Santos AMD; Souza BF; Silva AAMD
    Cad Saude Publica; 2021; 37(7):e00292320. PubMed ID: 34406216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking.
    McGough SF; Johansson MA; Lipsitch M; Menzies NA
    PLoS Comput Biol; 2020 Apr; 16(4):e1007735. PubMed ID: 32251464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011.
    Höhle M; an der Heiden M
    Biometrics; 2014 Dec; 70(4):993-1002. PubMed ID: 24930473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Area Deprivation and COVID-19 Incidence and Mortality in Bavaria, Germany: A Bayesian Geographical Analysis.
    Manz KM; Schwettmann L; Mansmann U; Maier W
    Front Public Health; 2022; 10():927658. PubMed ID: 35910894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time nowcasting and forecasting of COVID-19 dynamics in England: the first wave.
    Birrell P; Blake J; van Leeuwen E; Gent N; De Angelis D
    Philos Trans R Soc Lond B Biol Sci; 2021 Jul; 376(1829):20200279. PubMed ID: 34053254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mapping Regional Differences in Infection Rates for the Coronavirus (COVID-19): Results of a Bayesian Approach to Administrative Districts of Bavaria].
    Loidl V; Koller D; Mansmann U; Manz KM
    Gesundheitswesen; 2022 Dec; 84(12):1136-1144. PubMed ID: 36049779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nowcasting epidemics of novel pathogens: lessons from COVID-19.
    Wu JT; Leung K; Lam TTY; Ni MY; Wong CKH; Peiris JSM; Leung GM
    Nat Med; 2021 Mar; 27(3):388-395. PubMed ID: 33723452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EpiRegress: A Method to Estimate and Predict the Time-Varying Effective Reproduction Number.
    Jin S; Dickens BL; Lim JT; Cook AR
    Viruses; 2022 Jul; 14(7):. PubMed ID: 35891556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the early COVID-19 epidemic curve in Germany by regression models with change points.
    Küchenhoff H; Günther F; Höhle M; Bender A
    Epidemiol Infect; 2021 Mar; 149():e68. PubMed ID: 33691815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the reproduction number from coronavirus SARS-CoV-2 case data in Germany and implications for political measures.
    Khailaie S; Mitra T; Bandyopadhyay A; Schips M; Mascheroni P; Vanella P; Lange B; Binder SC; Meyer-Hermann M
    BMC Med; 2021 Jan; 19(1):32. PubMed ID: 33504336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases.
    Wang X; Zhou M; Jia J; Geng Z; Xiao G
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30104555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nowcasting COVID-19 Statistics Reported with Delay: A Case-Study of Sweden and the UK.
    Altmejd A; Rocklöv J; Wallin J
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian Spatiotemporal Nowcasting Model for Public Health Decision-Making and Surveillance.
    Kline D; Hyder A; Liu E; Rayo M; Malloy S; Root E
    Am J Epidemiol; 2022 May; 191(6):1107-1115. PubMed ID: 35225333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the course of the COVID-19 pandemic in Germany via spline-based hierarchical modelling of death counts.
    Wistuba T; Mayr A; Staerk C
    Sci Rep; 2022 Jun; 12(1):9784. PubMed ID: 35697761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projecting the course of COVID-19 in Turkey: A probabilistic modeling approach.
    Acar AC; Er AG; Burduroğlu HC; Sülkü SN; Aydin Son Y; Akin L; Ünal S
    Turk J Med Sci; 2021 Feb; 51(1):16-27. PubMed ID: 32530587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.