These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 3325824)

  • 1. A normal mitochondrial protein is selectively synthesized and accumulated during heat shock in Tetrahymena thermophila.
    McMullin TW; Hallberg RL
    Mol Cell Biol; 1987 Dec; 7(12):4414-23. PubMed ID: 3325824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A heat shock-induced, polymerase III-transcribed RNA selectively associates with polysomal ribosomes in Tetrahymena thermophila.
    Kraus KW; Good PJ; Hallberg RL
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):383-7. PubMed ID: 3467363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Products of mitochondrial protein synthesis in Tetrahymena.
    Young PG; Hunter NP
    Can J Biochem; 1979 Apr; 57(4):314-20. PubMed ID: 445221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast.
    Watson K; Dunlop G; Cavicchioli R
    FEBS Lett; 1984 Jul; 172(2):299-302. PubMed ID: 6378658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Destabilization of tubulin mRNA during heat shock in Tetrahymena pyriformis.
    Cóias R; Galego L; Barahona I; Rodrigues-Pousada C
    Eur J Biochem; 1988 Aug; 175(3):467-74. PubMed ID: 3137027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of heat shock protein synthesis in isolated mitochondria and plastids from maize.
    Nieto-Sotelo J; Ho TH
    J Biol Chem; 1987 Sep; 262(25):12288-92. PubMed ID: 3624259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A temperature-sensitive cell cycle arrest mutation affecting H1 phosphorylation and nuclear localization of a small heat shock protein in Tetrahymena thermophila.
    Thatcher TH; Gorovsky MA
    Exp Cell Res; 1993 Dec; 209(2):261-70. PubMed ID: 8262144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starved Tetrahymena thermophila cells that are unable to mount an effective heat shock response selectively degrade their rRNA.
    Hallberg RL; Kraus KW; Findly RC
    Mol Cell Biol; 1984 Oct; 4(10):2170-9. PubMed ID: 6504043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free messenger ribonucleoprotein complexes of chicken primary muscle cells following modification of protein synthesis by heat-shock treatment.
    Bag J
    Eur J Biochem; 1983 Sep; 135(2):187-96. PubMed ID: 6884361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of heat shock on the expression of thrombospondin by endothelial cells in culture.
    Ketis NV; Lawler J; Hoover RL; Karnovsky MJ
    J Cell Biol; 1988 Mar; 106(3):893-904. PubMed ID: 3279055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the major 68 kDa heat shock protein in a rat transformed astroglial cell line.
    Nishimura RN; Dwyer BE; de Vellis J; Clegg KB
    Brain Res Mol Brain Res; 1992 Jan; 12(1-3):203-8. PubMed ID: 1312202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene.
    McMullin TW; Hallberg RL
    Mol Cell Biol; 1988 Jan; 8(1):371-80. PubMed ID: 2892128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of acquired thermotolerance in Tetrahymena thermophila: effects of protein synthesis inhibitors.
    Hallberg RL; Kraus KW; Hallberg EM
    Mol Cell Biol; 1985 Aug; 5(8):2061-9. PubMed ID: 3837855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress response of Tetrahymena pyriformis to arsenite and heat shock: differences and similarities.
    Amaral MD; Galego L; Rodrigues-Pousada C
    Eur J Biochem; 1988 Feb; 171(3):463-70. PubMed ID: 3126063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of heat shock on ribosome structure: appearance of a new ribosome-associated protein.
    McMullin TW; Hallberg RL
    Mol Cell Biol; 1986 Jul; 6(7):2527-35. PubMed ID: 3537722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid effect of heat shock on two heterogeneous nuclear ribonucleoprotein-associated antigens in HeLa cells.
    Mähl P; Lutz Y; Puvion E; Fuchs JP
    J Cell Biol; 1989 Nov; 109(5):1921-35. PubMed ID: 2681223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Tetrahymena thermophila mutant strain unable to develop normal thermotolerance.
    Kraus KW; Hallberg EM; Hallberg R
    Mol Cell Biol; 1986 Nov; 6(11):3854-61. PubMed ID: 3796597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae.
    Lewis JG; Learmonth RP; Watson K
    Microbiology (Reading); 1995 Mar; 141 ( Pt 3)():687-94. PubMed ID: 7711907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered expression and phosphorylation of amyloid precursor protein in heat shocked neuronal PC12 cells.
    Johnson G; Refolo LM; Merril CR; Wallace W
    Brain Res Mol Brain Res; 1993 Jul; 19(1-2):140-8. PubMed ID: 8361337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of heat shock proteins by canavanine in Tetrahymena. No change in ATP levels measured in vivo by NMR.
    Jones KA; Findly RC
    J Biol Chem; 1986 Jul; 261(19):8703-7. PubMed ID: 3722169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.