These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33258470)
1. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. Lv J; Wang J; Shang X; Liu F; Guo S Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33258470 [TBL] [Abstract][Full Text] [Related]
2. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Song H; Ruan C; Xu Y; Xu T; Fan R; Jiang T; Cao M; Song J Exp Biol Med (Maywood); 2022 Jun; 247(11):898-909. PubMed ID: 34904882 [TBL] [Abstract][Full Text] [Related]
3. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma. Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based model for predicting progression in patients with head and neck squamous cell carcinoma. Zhao Z; Li Y; Wu Y; Chen R Cancer Biomark; 2020; 27(1):19-28. PubMed ID: 31658045 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning-Based Multi-Omics Integration Robustly Predicts Relapse in Prostate Cancer. Wei Z; Han D; Zhang C; Wang S; Liu J; Chao F; Song Z; Chen G Front Oncol; 2022; 12():893424. PubMed ID: 35814412 [TBL] [Abstract][Full Text] [Related]
6. Identification and Validation of Immune-Related Prognostic Genes in the Tumor Microenvironment of Colon Adenocarcinoma. Pan S; Tang T; Wu Y; Zhang L; Song Z; Yu S Front Genet; 2021; 12():778153. PubMed ID: 35047006 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning data integration for better risk stratification models of bladder cancer. Poirion OB; Chaudhary K; Garmire LX AMIA Jt Summits Transl Sci Proc; 2018; 2017():197-206. PubMed ID: 29888072 [TBL] [Abstract][Full Text] [Related]
8. A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data. Salimy S; Lanjanian H; Abbasi K; Salimi M; Najafi A; Tapak L; Masoudi-Nejad A Heliyon; 2023 Jul; 9(7):e17653. PubMed ID: 37455955 [TBL] [Abstract][Full Text] [Related]
9. Deep learning algorithm reveals two prognostic subtypes in patients with gliomas. Tian J; Zhu M; Ren Z; Zhao Q; Wang P; He CK; Zhang M; Peng X; Wu B; Feng R; Fu M BMC Bioinformatics; 2022 Oct; 23(1):417. PubMed ID: 36221066 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Chaudhary K; Poirion OB; Lu L; Garmire LX Clin Cancer Res; 2018 Mar; 24(6):1248-1259. PubMed ID: 28982688 [TBL] [Abstract][Full Text] [Related]
11. A model for predicting prognosis in patients with esophageal squamous cell carcinoma based on joint representation learning. Yu J; Wu X; Lv M; Zhang Y; Zhang X; Li J; Zhu M; Huang J; Zhang Q Oncol Lett; 2020 Dec; 20(6):387. PubMed ID: 33193847 [TBL] [Abstract][Full Text] [Related]
12. An Unsupervised Deep Learning-Based Model Using Multiomics Data to Predict Prognosis of Patients with Stomach Adenocarcinoma. Chen S; Zang Y; Xu B; Lu B; Ma R; Miao P; Chen B Comput Math Methods Med; 2022; 2022():5844846. PubMed ID: 36339684 [TBL] [Abstract][Full Text] [Related]
13. An Intratumor Heterogeneity-Related Signature for Predicting Prognosis, Immune Landscape, and Chemotherapy Response in Colon Adenocarcinoma. Liu C; Liu D; Wang F; Xie J; Liu Y; Wang H; Rong J; Xie J; Wang J; Zeng R; Zhou F; Xie Y Front Med (Lausanne); 2022; 9():925661. PubMed ID: 35872794 [TBL] [Abstract][Full Text] [Related]
14. Multi-Omics Characteristics of Ferroptosis Associated with Colon Adenocarcinoma Typing and Survival. Chen XQ; Lian K; Chen ZW; Zhang X; Li T; Wu T; Shen T; Cai XY; Cheng XS; Xiao FH; Li YF Front Biosci (Landmark Ed); 2024 Jan; 29(1):13. PubMed ID: 38287836 [TBL] [Abstract][Full Text] [Related]
15. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication. Lee TY; Huang KY; Chuang CH; Lee CY; Chang TH Comput Biol Chem; 2020 May; 87():107277. PubMed ID: 32512487 [TBL] [Abstract][Full Text] [Related]
16. The Interferon Gamma-Related Long Noncoding RNA Signature Predicts Prognosis and Indicates Immune Microenvironment Infiltration in Colon Adenocarcinoma. Liu C; Liu D; Wang F; Xie J; Liu Y; Wang H; Rong J; Xie J; Wang J; Zeng R; Xie Y Front Oncol; 2022; 12():876660. PubMed ID: 35747790 [TBL] [Abstract][Full Text] [Related]
17. Screening of miRNAs as Prognostic Biomarkers for Colon Adenocarcinoma and Biological Function Analysis of Their Target Genes. Zheng G; Zhang G; Zhao Y; Zheng Z Front Oncol; 2021; 11():560136. PubMed ID: 33816220 [TBL] [Abstract][Full Text] [Related]
18. Identification of 9 Gene Signatures by WGCNA to Predict Prognosis for Colon Adenocarcinoma. Yang M; He H; Peng T; Lu Y; Yu J Comput Intell Neurosci; 2022; 2022():8598046. PubMed ID: 35392038 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based ovarian cancer subtypes identification using multi-omics data. Guo LY; Wu AH; Wang YX; Zhang LP; Chai H; Liang XF BioData Min; 2020; 13():10. PubMed ID: 32863885 [TBL] [Abstract][Full Text] [Related]
20. Identification of a glycolysis- and lactate-related gene signature for predicting prognosis, immune microenvironment, and drug candidates in colon adenocarcinoma. Liu C; Liu D; Wang F; Xie J; Liu Y; Wang H; Rong J; Xie J; Wang J; Zeng R; Zhou F; Peng J; Xie Y Front Cell Dev Biol; 2022; 10():971992. PubMed ID: 36081904 [No Abstract] [Full Text] [Related] [Next] [New Search]