These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33258636)

  • 1. Systematic Uncertainty of Standard Sirens from the Viewing Angle of Binary Neutron Star Inspirals.
    Chen HY
    Phys Rev Lett; 2020 Nov; 125(20):201301. PubMed ID: 33258636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating the Counterpart Selection Effect for Standard Sirens.
    Chen HY; Talbot C; Chase EA
    Phys Rev Lett; 2024 May; 132(19):191003. PubMed ID: 38804944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the Hubble Constant with Neutron Star Black Hole Mergers.
    Vitale S; Chen HY
    Phys Rev Lett; 2018 Jul; 121(2):021303. PubMed ID: 30085719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two per cent Hubble constant measurement from standard sirens within five years.
    Chen HY; Fishbach M; Holz DE
    Nature; 2018 Oct; 562(7728):545-547. PubMed ID: 30333628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gravitational-wave standard siren measurement of the Hubble constant.
    ; ; ; ; ; ;
    Nature; 2017 Nov; 551(7678):85-88. PubMed ID: 29094696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the Hubble constant with a sample of kilonovae.
    Coughlin MW; Antier S; Dietrich T; Foley RJ; Heinzel J; Bulla M; Christensen N; Coulter DA; Issa L; Khetan N
    Nat Commun; 2020 Aug; 11(1):4129. PubMed ID: 32807780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects for Resolving the Hubble Constant Tension with Standard Sirens.
    Feeney SM; Peiris HV; Williamson AR; Nissanke SM; Mortlock DJ; Alsing J; Scolnic D
    Phys Rev Lett; 2019 Feb; 122(6):061105. PubMed ID: 30822066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimessenger constraints on the neutron-star equation of state and the Hubble constant.
    Dietrich T; Coughlin MW; Pang PTH; Bulla M; Heinzel J; Issa L; Tews I; Antier S
    Science; 2020 Dec; 370(6523):1450-1453. PubMed ID: 33335061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral Sirens: Cosmology from the Full Mass Distribution of Compact Binaries.
    Ezquiaga JM; Holz DE
    Phys Rev Lett; 2022 Aug; 129(6):061102. PubMed ID: 36018642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hubble parameter estimation via dark sirens with the LISA-Taiji network.
    Wang R; Ruan WH; Yang Q; Guo ZK; Cai RG; Hu B
    Natl Sci Rev; 2022 Feb; 9(2):nwab054. PubMed ID: 35211320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical relativity of compact binaries in the 21st century.
    Duez MD; Zlochower Y
    Rep Prog Phys; 2019 Jan; 82(1):016902. PubMed ID: 30117809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision cosmology from future lensed gravitational wave and electromagnetic signals.
    Liao K; Fan XL; Ding X; Biesiada M; Zhu ZH
    Nat Commun; 2017 Oct; 8(1):1148. PubMed ID: 29074973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects for Measuring the Hubble Constant with Neutron-Star-Black-Hole Mergers.
    Feeney SM; Peiris HV; Nissanke SM; Mortlock DJ
    Phys Rev Lett; 2021 Apr; 126(17):171102. PubMed ID: 33988410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropies of Gravitational-Wave Standard Sirens as a New Cosmological Probe without Redshift Information.
    Namikawa T; Nishizawa A; Taruya A
    Phys Rev Lett; 2016 Mar; 116(12):121302. PubMed ID: 27058068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Constraints on Nuclear Coupling of Axionlike Particles from the Binary Neutron Star Gravitational Wave Event GW170817.
    Zhang J; Lyu Z; Huang J; Johnson MC; Sagunski L; Sakellariadou M; Yang H
    Phys Rev Lett; 2021 Oct; 127(16):161101. PubMed ID: 34723593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens from Taiji.
    Zhao ZW; Wang LF; Zhang JF; Zhang X
    Sci Bull (Beijing); 2020 Aug; 65(16):1340-1348. PubMed ID: 36659212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.
    Zappa F; Bernuzzi S; Radice D; Perego A; Dietrich T
    Phys Rev Lett; 2018 Mar; 120(11):111101. PubMed ID: 29601774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers.
    Pang PTH; Dietrich T; Coughlin MW; Bulla M; Tews I; Almualla M; Barna T; Kiendrebeogo RW; Kunert N; Mansingh G; Reed B; Sravan N; Toivonen A; Antier S; VandenBerg RO; Heinzel J; Nedora V; Salehi P; Sharma R; Somasundaram R; Van Den Broeck C
    Nat Commun; 2023 Dec; 14(1):8352. PubMed ID: 38123551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic and gravitational outputs from binary-neutron-star coalescence.
    Palenzuela C; Lehner L; Ponce M; Liebling SL; Anderson M; Neilsen D; Motl P
    Phys Rev Lett; 2013 Aug; 111(6):061105. PubMed ID: 23971553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A kilonova as the electromagnetic counterpart to a gravitational-wave source.
    Smartt SJ; Chen TW; Jerkstrand A; Coughlin M; Kankare E; Sim SA; Fraser M; Inserra C; Maguire K; Chambers KC; Huber ME; Krühler T; Leloudas G; Magee M; Shingles LJ; Smith KW; Young DR; Tonry J; Kotak R; Gal-Yam A; Lyman JD; Homan DS; Agliozzo C; Anderson JP; Angus CR; Ashall C; Barbarino C; Bauer FE; Berton M; Botticella MT; Bulla M; Bulger J; Cannizzaro G; Cano Z; Cartier R; Cikota A; Clark P; De Cia A; Della Valle M; Denneau L; Dennefeld M; Dessart L; Dimitriadis G; Elias-Rosa N; Firth RE; Flewelling H; Flörs A; Franckowiak A; Frohmaier C; Galbany L; González-Gaitán S; Greiner J; Gromadzki M; Guelbenzu AN; Gutiérrez CP; Hamanowicz A; Hanlon L; Harmanen J; Heintz KE; Heinze A; Hernandez MS; Hodgkin ST; Hook IM; Izzo L; James PA; Jonker PG; Kerzendorf WE; Klose S; Kostrzewa-Rutkowska Z; Kowalski M; Kromer M; Kuncarayakti H; Lawrence A; Lowe TB; Magnier EA; Manulis I; Martin-Carrillo A; Mattila S; McBrien O; Müller A; Nordin J; O'Neill D; Onori F; Palmerio JT; Pastorello A; Patat F; Pignata G; Podsiadlowski P; Pumo ML; Prentice SJ; Rau A; Razza A; Rest A; Reynolds T; Roy R; Ruiter AJ; Rybicki KA; Salmon L; Schady P; Schultz ASB; Schweyer T; Seitenzahl IR; Smith M; Sollerman J; Stalder B; Stubbs CW; Sullivan M; Szegedi H; Taddia F; Taubenberger S; Terreran G; van Soelen B; Vos J; Wainscoat RJ; Walton NA; Waters C; Weiland H; Willman M; Wiseman P; Wright DE; Wyrzykowski Ł; Yaron O
    Nature; 2017 Nov; 551(7678):75-79. PubMed ID: 29094693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.