These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33258641)

  • 21. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.
    Choi S; Choi HJ; Ok JM; Lee Y; Jang WJ; Lee AT; Kuk Y; Lee S; Heinrich AJ; Cheong SW; Bang Y; Johnston S; Kim JS; Lee J
    Phys Rev Lett; 2017 Dec; 119(22):227001. PubMed ID: 29286823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling Superconducting Critical Temperature of 122-Iron-Based Pnictide Intermetallic Superconductor Using a Hybrid Intelligent Computational Method.
    Akomolafe O; Owolabi TO; Abd Rahman MA; Awang Kechik MM; Yasin MNM; Souiyah M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Response of superconductivity and crystal structure of LiFeAs to hydrostatic pressure.
    Mito M; Pitcher MJ; Crichton W; Garbarino G; Baker PJ; Blundell SJ; Adamson P; Parker DR; Clarke SJ
    J Am Chem Soc; 2009 Mar; 131(8):2986-92. PubMed ID: 19206468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of pressure on superconductivity in the indium-doped topological crystalline insulator SnTe.
    Maurya VK; Jha R; Shruti ; Awana VP; Patnaik S
    J Phys Condens Matter; 2015 Jun; 27(24):242201. PubMed ID: 26001159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous optimization of spin fluctuations and superconductivity under pressure in an iron-based superconductor.
    Ji GF; Zhang JS; Ma L; Fan P; Wang PS; Dai J; Tan GT; Song Y; Zhang CL; Dai P; Normand B; Yu W
    Phys Rev Lett; 2013 Sep; 111(10):107004. PubMed ID: 25166698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PTCDA Molecular Monolayer on Pb Thin Films: An Unusual π-Electron Kondo System and Its Interplay with a Quantum-Confined Superconductor.
    Lu S; Nam H; Xiao P; Liu M; Guo Y; Bai Y; Cheng Z; Deng J; Li Y; Zhou H; Henkelman G; Fiete GA; Gao HJ; MacDonald AH; Zhang C; Shih CK
    Phys Rev Lett; 2021 Oct; 127(18):186805. PubMed ID: 34767397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Doping dependent evolution of magnetism and superconductivity in Eu(1-x)K(x)Fe2As2 (x = 0-1) and temperature dependence of the lower critical field H(c1).
    Anupam ; Paulose PL; Ramakrishnan S; Hossain Z
    J Phys Condens Matter; 2011 Nov; 23(45):455702. PubMed ID: 22019495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport, magnetic, and 57Fe and 155Gd Mössbauer spectroscopic properties of GdFeAsO and the slightly overdoped superconductor Gd(0.84)Th(0.16)FeAsO.
    Wang P; Stadnik ZM; Wang C; Cao GH; Xu ZA
    J Phys Condens Matter; 2010 Apr; 22(14):145701. PubMed ID: 21389534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CeNiAsO: an antiferromagnetic dense Kondo lattice.
    Luo Y; Han H; Tan H; Lin X; Li Y; Jiang S; Feng C; Dai J; Cao G; Xu Z; Li S
    J Phys Condens Matter; 2011 May; 23(17):175701. PubMed ID: 21474880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pressure-induced superconducting state of europium metal at low temperatures.
    Debessai M; Matsuoka T; Hamlin JJ; Schilling JS; Shimizu K
    Phys Rev Lett; 2009 May; 102(19):197002. PubMed ID: 19518988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and physical properties for a new layered pnictide-oxide: BaTi₂As₂O.
    Wang XF; Yan YJ; Ying JJ; Li QJ; Zhang M; Xu N; Chen XH
    J Phys Condens Matter; 2010 Feb; 22(7):075702. PubMed ID: 21386395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Kondo effect in ferromagnetic atomic contacts.
    Calvo MR; Fernández-Rossier J; Palacios JJ; Jacob D; Natelson D; Untiedt C
    Nature; 2009 Apr; 458(7242):1150-3. PubMed ID: 19407797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. (Lu0.8Ce0.2)2Fe17 single crystal under hydrostatic and 'negative' pressure induced by hydrogenation.
    Tereshina EA; Andreev AV; Kamarád J; Isnard O; Watanabe K
    J Phys Condens Matter; 2011 Jun; 23(21):216004. PubMed ID: 21558595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mean-field approach to Kondo-attractive-Hubbard model.
    Costa NC; de Lima JP; Paiva T; El Massalami M; Dos Santos RR
    J Phys Condens Matter; 2018 Jan; 30(4):045602. PubMed ID: 29239305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of isoelectronic substitution and hydrostatic pressure on the quantum critical properties of CeRhSi
    Valenta J; Naka T; Diviš M; Vališka M; Proschek P; Vlášková K; Klicpera M; Prokleška J; Custers J; Prchal J
    J Phys Condens Matter; 2020 Jul; 32(42):. PubMed ID: 32585641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superconducting state in SrFe2-xCoxAs2 by internal doping of the iron arsenide layers.
    Leithe-Jasper A; Schnelle W; Geibel C; Rosner H
    Phys Rev Lett; 2008 Nov; 101(20):207004. PubMed ID: 19113371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scaling the Kondo lattice.
    Yang YF; Fisk Z; Lee HO; Thompson JD; Pines D
    Nature; 2008 Jul; 454(7204):611-3. PubMed ID: 18668102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superconductivity in the non-magnetic state of iron under pressure.
    Shimizu K; Kimura T; Furomoto S; Takeda K; Kontani K; Onuki Y; Amaya K
    Nature; 2001 Jul; 412(6844):316-8. PubMed ID: 11460158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-reversal symmetry breaking superconductivity in the coexistence phase with magnetism in Fe pnictides.
    Hinojosa A; Fernandes RM; Chubukov AV
    Phys Rev Lett; 2014 Oct; 113(16):167001. PubMed ID: 25361274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
    Steglich F; Wirth S
    Rep Prog Phys; 2016 Aug; 79(8):084502. PubMed ID: 27376190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.