These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33258844)

  • 1. Blind source separation with integrated photonics and reduced dimensional statistics.
    Ma PY; Tait AN; Zhang W; Karahan EA; Ferreira de Lima T; Huang C; Shastri BJ; Prucnal PR
    Opt Lett; 2020 Dec; 45(23):6494-6497. PubMed ID: 33258844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband physical layer cognitive radio with an integrated photonic processor for blind source separation.
    Zhang W; Tait A; Huang C; Ferreira de Lima T; Bilodeau S; Blow EC; Jha A; Shastri BJ; Prucnal P
    Nat Commun; 2023 Feb; 14(1):1107. PubMed ID: 36849533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A system-on-chip microwave photonic processor solves dynamic RF interference in real time with picosecond latency.
    Zhang W; Lederman JC; Ferreira de Lima T; Zhang J; Bilodeau S; Hudson L; Tait A; Shastri BJ; Prucnal PR
    Light Sci Appl; 2024 Jan; 13(1):14. PubMed ID: 38195653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Baseband Wireless Spectrum Hypervisor for Multiplexing Concurrent OFDM Signals.
    Figueiredo FAP; Mennes R; Jabandžić I; Jiao X; Moerman I
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive photonic RF spectral shaper.
    Liu Q; Fok MP
    Opt Express; 2020 Aug; 28(17):24789-24798. PubMed ID: 32907011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave photonic RF front-end for co-frequency co-time full duplex 5G communication with integrated RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion.
    Huang L; Zhang Y; Li X; Deng L; Cheng M; Fu S; Tang M; Liu D
    Opt Express; 2019 Oct; 27(22):32147-32157. PubMed ID: 31684432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic independent component analysis using an on-chip microring weight bank.
    Ma PY; Tait AN; de Lima TF; Huang C; Shastri BJ; Prucnal PR
    Opt Express; 2020 Jan; 28(2):1827-1844. PubMed ID: 32121887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated microwave photonic true-time delay with interferometric delay enhancement based on Brillouin scattering and microring resonators.
    McKay L; Merklein M; Liu Y; Cramer A; Maksymow J; Chilton A; Yan K; Choi DY; Madden SJ; DeSalvo R; Eggleton BJ
    Opt Express; 2020 Nov; 28(24):36020-36032. PubMed ID: 33379706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RF photonic front-end integrating with local oscillator loop.
    Yu H; Chen M; Gao H; Yang S; Chen H; Xie S
    Opt Express; 2014 Feb; 22(4):3918-23. PubMed ID: 24663712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave photonic frequency down-conversion and channel switching for satellite communication.
    Zhu S; Fan X; Li M; Hua Zhu N; Li W
    Opt Lett; 2020 Sep; 45(18):5000-5003. PubMed ID: 32932437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference.
    Choudhary A; Liu Y; Morrison B; Vu K; Choi DY; Ma P; Madden S; Marpaung D; Eggleton BJ
    Sci Rep; 2017 Jul; 7(1):5932. PubMed ID: 28724994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfigurable multi-band microwave photonic radar transmitter with a wide operating frequency range.
    Zhang X; Sun Q; Yang J; Cao J; Li W
    Opt Express; 2019 Nov; 27(24):34519-34529. PubMed ID: 31878640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband RF front-end using microwave photonics filter.
    Wang J; Chen M; Liang Y; Chen H; Yang S; Xie S
    Opt Express; 2015 Jan; 23(2):839-45. PubMed ID: 25835844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-band RF receiver based on dual-OFC-based photonic channelization and spectrum stitching technique.
    Yang J; Li R; Dai Y; Dong J; Li W
    Opt Express; 2019 Nov; 27(23):33194-33204. PubMed ID: 31878393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength-compensated photonic multibeam-forming system for two-dimensional wideband radio-frequency phased-array antennas.
    Gao L; Wagner KH
    Appl Opt; 2009 Aug; 48(22):E1-12. PubMed ID: 19649023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave photonics for space-time compression of ultrabroadband signals through multipath wireless channels.
    Dezfooliyan A; Weiner AM
    Opt Lett; 2013 Dec; 38(23):4946-9. PubMed ID: 24281479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic printed photonics: From microring lasers to integrated circuits.
    Zhang C; Zou CL; Zhao Y; Dong CH; Wei C; Wang H; Liu Y; Guo GC; Yao J; Zhao YS
    Sci Adv; 2015 Sep; 1(8):e1500257. PubMed ID: 26601256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra High-Speed Radio Frequency Switch Based on Photonics.
    Ge J; Fok MP
    Sci Rep; 2015 Nov; 5():17263. PubMed ID: 26608349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband microwave photonic phase shifter based on a feedback-coupled microring resonator with small radio frequency power variations.
    Tang J; Li M; Sun S; Li Z; Li W; Zhu N
    Opt Lett; 2016 Oct; 41(20):4609-4612. PubMed ID: 28005848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated source-free all optical sampling with a sampling rate of up to three times the RF bandwidth of silicon photonic MZM.
    Misra A; Kress C; Singh K; Preußler S; Christoph Scheytt J; Schneider T
    Opt Express; 2019 Oct; 27(21):29972-29984. PubMed ID: 31684252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.