These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33258855)

  • 41. Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals.
    N Konopsky V; V Alieva E; Yu Alyatkin S; A Melnikov A; V Chekalin S; M Agranovich V
    Light Sci Appl; 2016 Nov; 5(11):e16168. PubMed ID: 30167129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction of propagation and bending losses of heterostructured photonic crystal waveguides by use of a high-delta structure.
    Miura K; Ohtera Y; Ohkubo H; Akutsu N; Kawakami S
    Opt Lett; 2003 May; 28(9):734-6. PubMed ID: 12747723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bloch surface wave structures for high sensitivity detection and compact waveguiding.
    Khan MU; Corbett B
    Sci Technol Adv Mater; 2016; 17(1):398-409. PubMed ID: 27877891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-Dimensional Hole-Array Grating-Coupling-Based Excitation of Bloch Surface Waves for Highly Sensitive Biosensing.
    Ge D; Shi J; Rezk A; Ma C; Zhang L; Yang P; Zhu S
    Nanoscale Res Lett; 2019 Oct; 14(1):319. PubMed ID: 31599355
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bloch surface wave-atom coupling in one-dimensional photonic crystal structure.
    Asadolah Salmanpour M; Mosleh M; Hamidi SM
    Opt Express; 2023 Jan; 31(3):4751-4759. PubMed ID: 36785434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bloch surface wave-enhanced fluorescence biosensor.
    Toma K; Descrovi E; Toma M; Ballarini M; Mandracci P; Giorgis F; Mateescu A; Jonas U; Knoll W; Dostálek J
    Biosens Bioelectron; 2013 May; 43():108-14. PubMed ID: 23291217
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-Dimensional Photonic Devices based on Bloch Surface Waves with One-Dimensional Grooves.
    Wang R; Chen J; Xiang Y; Kuai Y; Wang P; Ming H; Lakowicz JR; Zhang D
    Phys Rev Appl; 2018 Aug; 10(2):. PubMed ID: 31576366
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct measurements of forces induced by Bloch surface waves in a one-dimensional photonic crystal.
    Shilkin DA; Lyubin EV; Soboleva IV; Fedyanin AA
    Opt Lett; 2015 Nov; 40(21):4883-6. PubMed ID: 26512474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorescence Coupling to Internal Modes of 1D Photonic Crystals Characterized by Back Focal Plane Imaging.
    Choudhury SD; Xiang Y; Zhang D; Descrovi E; Badugu R; Lakowicz JR
    J Opt; 2021 Mar; 23(3):. PubMed ID: 33936580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing.
    Tu T; Pang F; Zhu S; Cheng J; Liu H; Wen J; Wang T
    Opt Express; 2017 Apr; 25(8):9019-9027. PubMed ID: 28437976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced magnetic response in a gold nanowire pair array through coupling with Bloch surface waves.
    Liu H; Sun X; Pei Y; Yao F; Jiang Y
    Opt Lett; 2011 Jul; 36(13):2414-6. PubMed ID: 21725429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Refractometric sensitivity of Bloch surface waves: perturbation theory calculation and experimental validation.
    Dias BS; de Almeida JMMM; Coelho LCC
    Opt Lett; 2023 Feb; 48(3):727-730. PubMed ID: 36723574
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bloch surface waves confined in one dimension with a single polymeric nanofibre.
    Wang R; Xia H; Zhang D; Chen J; Zhu L; Wang Y; Yang E; Zang T; Wen X; Zou G; Wang P; Ming H; Badugu R; Lakowicz JR
    Nat Commun; 2017 Feb; 8():14330. PubMed ID: 28155871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reducing disorder-induced losses for slow light photonic crystal waveguides through Bloch mode engineering.
    Mann N; Combrié S; Colman P; Patterson M; De Rossi A; Hughes S
    Opt Lett; 2013 Oct; 38(20):4244-7. PubMed ID: 24321970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Floquet-Bloch solutions in a sawtooth photonic crystal.
    Caffrey S; Morozov GV; Sprung DWL; Martorell J
    Opt Quantum Electron; 2017; 49(3):112. PubMed ID: 32226197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Local probing of Bloch mode dispersion in a photonic crystal waveguide.
    Engelen RJ; Karle T; Gersen H; Korterik J; Krauss T; Kuipers L; van Hulst N
    Opt Express; 2005 Jun; 13(12):4457-64. PubMed ID: 19495360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Positive phase evolution of waves propagating along a photonic crystal with negative index of refraction.
    Martínez A; Martí J
    Opt Express; 2006 Oct; 14(21):9805-14. PubMed ID: 19529372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs.
    Gerace D; Andreani LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056603. PubMed ID: 15244959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations.
    Wen F; David S; Checoury X; El Kurdi M; Boucaud P
    Opt Express; 2008 Aug; 16(16):12278-89. PubMed ID: 18679505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robust topologically protected transport in photonic crystals at telecommunication wavelengths.
    Shalaev MI; Walasik W; Tsukernik A; Xu Y; Litchinitser NM
    Nat Nanotechnol; 2019 Jan; 14(1):31-34. PubMed ID: 30420760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.