These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33259272)

  • 1. A comparison of work-rest models using a "breakpoint" analysis raises questions.
    Neumann WP; Motiwala M; Rose LM
    IISE Trans Occup Ergon Hum Factors; 2020; 8(4):187-194. PubMed ID: 33259272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling endurance and resumption times for repetitive one-hand pushing.
    Rose LM; Beauchemin CAA; Neumann WP
    Ergonomics; 2018 Jul; 61(7):891-901. PubMed ID: 29320970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical variation in low-load work - physiological effects during exposure & recovery.
    Yung M; Wells R
    Work; 2012; 41 Suppl 1():5731-3. PubMed ID: 22317667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle fatigue and endurance during repetitive intermittent static efforts: development of prediction models.
    Iridiastadi H; Nussbaum MA
    Ergonomics; 2006 Mar; 49(4):344-60. PubMed ID: 16690564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue response of rat medial longissimus muscles induced with electrical stimulation at various work/rest ratios.
    Wawrow PT; Jakobi JM; Cavanaugh JM
    J Electromyogr Kinesiol; 2011 Dec; 21(6):939-46. PubMed ID: 21925902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work.
    Mehta RK; Agnew MJ
    Eur J Appl Physiol; 2012 Aug; 112(8):2891-902. PubMed ID: 22143842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular fatigue and endurance during intermittent static efforts: effects of contraction level, duty cycle, and cycle time.
    Iridiastadi H; Nussbaum MA
    Hum Factors; 2006; 48(4):710-20. PubMed ID: 17240719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of cycle time on shoulder fatigue responses for a fixed total overhead workload.
    Dickerson CR; Meszaros KA; Cudlip AC; Chopp-Hurley JN; Langenderfer JE
    J Biomech; 2015 Aug; 48(11):2911-8. PubMed ID: 26117074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modified version of the three-compartment model to predict fatigue during submaximal tasks with complex force-time histories.
    Sonne MW; Potvin JR
    Ergonomics; 2016; 59(1):85-98. PubMed ID: 26018327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Localized Muscle Fatigue Responses at Current Upper-Extremity Ergonomics Threshold Limit Values.
    Abdel-Malek DM; Foley RCA; Wakeely F; Graham JD; La Delfa NJ
    Hum Factors; 2022 Mar; 64(2):385-400. PubMed ID: 32757794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue and endurance limits during intermittent overhead work.
    Nussbaum MA; Clark LL; Lanza MA; Rice KM
    AIHAJ; 2001; 62(4):446-56. PubMed ID: 11549138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety.
    Blum AB; Shea S; Czeisler CA; Landrigan CP; Leape L
    Nat Sci Sleep; 2011; 3():47-85. PubMed ID: 23616719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of physical workload patterns and breaks on heart rate recovery].
    Kadoya M; Izumi H; Kubota M; Yamashita T; Kumashiro M
    Sangyo Eiseigaku Zasshi; 2010; 52(1):12-20. PubMed ID: 20009386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Work schedule and task factors in upper-extremity fatigue.
    Rosa RR; Bonnet MH; Cole LL
    Hum Factors; 1998 Mar; 40(1):150-8. PubMed ID: 9579109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapting a fatigue model for shoulder flexion fatigue: Enhancing recovery rate during intermittent rest intervals.
    Looft JM; Frey-Law LA
    J Biomech; 2020 Jun; 106():109762. PubMed ID: 32517992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nurses' Rest Breaks and Fatigue: The Roles of Psychological Detachment and Workload.
    Sagherian K; McNeely C; Cho H; Steege LM
    West J Nurs Res; 2023 Oct; 45(10):885-893. PubMed ID: 37621023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicted endurance times during overhead work: influences of duty cycle and tool mass estimated using perceived discomfort.
    Sood D; Nussbaum MA; Hager K; Nogueira HC
    Ergonomics; 2017 Oct; 60(10):1405-1414. PubMed ID: 28277169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantify work load and muscle functional activation patterns in neck-shoulder muscles of female sewing machine operators using surface electromyogram.
    Zhang FR; He LH; Wu SS; Li JY; Ye KP; Wang S
    Chin Med J (Engl); 2011 Nov; 124(22):3731-7. PubMed ID: 22340233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimizing fatigue during repetitive jobs: optimal work-rest schedules.
    Wood DD; Fisher DL; Andres RO
    Hum Factors; 1997 Mar; 39(1):83-101. PubMed ID: 9302881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An exploratory study comparing three work/rest schedules during simulated repetitive precision work.
    Tsao L; Kim S; Ma L; Nussbaum MA
    Ergonomics; 2021 Dec; 64(12):1579-1594. PubMed ID: 34224340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.