These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33259305)

  • 1. Clock Synchronization for Mobile Molecular Communication Systems.
    Huang L; Lin L; Liu F; Yan H
    IEEE Trans Nanobioscience; 2021 Oct; 20(4):406-415. PubMed ID: 33259305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Complexity Adaptive Signal Detection for Mobile Molecular Communication.
    Mu X; Yan H; Li B; Liu M; Zheng R; Li Y; Lin L
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):237-248. PubMed ID: 31944963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutual Information and Maximum Achievable Rate for Mobile Molecular Communication Systems.
    Lin L; Wu Q; Liu F; Yan H
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):507-517. PubMed ID: 30235143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symbol Synchronization for Diffusion-Based Molecular Communications.
    Jamali V; Ahmadzadeh A; Schober R
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):873-887. PubMed ID: 29364131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.
    Chang G; Lin L; Yan H
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):21-35. PubMed ID: 29570072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical Analysis of Received Signal and Error Performance for Mobile Molecular Communication.
    Huang S; Lin L; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):415-427. PubMed ID: 30932843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial Distance Estimation and Signal Detection for Diffusive Mobile Molecular Communication.
    Huang S; Lin L; Guo W; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):422-433. PubMed ID: 32275604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Non-Coherent Signal Detection Techniques for Mobile Molecular Communication.
    Yu W; Liu F; Yan H; Lin L
    IEEE Trans Nanobioscience; 2023 Apr; 22(2):356-364. PubMed ID: 35877803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Two Receivers on Broadcast Molecular Communication Systems.
    Lu Y; Higgins MD; Noel A; Leeson MS; Chen Y
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):891-900. PubMed ID: 27775906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thresholdless Detection of Symbols in Nano-Communication Systems.
    Sharma S; Deka K; Bhatia V
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):259-266. PubMed ID: 31796412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Photolysis-Assist Molecular Communication for Tumor Biosensing.
    Sun Y; Bian H; Chen Y
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers.
    Arifler D; Arifler D
    IEEE Trans Nanobioscience; 2017 Apr; 16(3):157-165. PubMed ID: 28368824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum Likelihood Detection With Ligand Receptors for Diffusion-Based Molecular Communications in Internet of Bio-Nano Things.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):44-54. PubMed ID: 29570074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratio Shift Keying Modulation for Time-Varying Molecular Communication Channels.
    Araz MO; Emirdagi AR; Kopuzlu MS; Kuscu M
    IEEE Trans Nanobioscience; 2024 Jan; 23(1):176-189. PubMed ID: 37490368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of receiver shape and volume on the Alzheimer disease for molecular communication via diffusion.
    Isik I; Yilmaz HB; Demirkol I; Tagluk ME
    IET Nanobiotechnol; 2020 Sep; 14(7):602-608. PubMed ID: 33010136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum-Likelihood Estimator of Clock Offset between Nanomachines in Bionanosensor Networks.
    Lin L; Yang C; Ma M
    Sensors (Basel); 2015 Dec; 15(12):30827-38. PubMed ID: 26690173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shannon Meets Fick on the Microfluidic Channel: Diffusion Limit to Sum Broadcast Capacity for Molecular Communication.
    Bicen AO; Lehtomaki JJ; Akyildiz IF
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):88-94. PubMed ID: 29570079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Clock-Free Asynchronous Receiver Design for Molecular Timing Channels in Diffusion-Based Molecular Communications.
    Li Q
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):585-596. PubMed ID: 31199266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Modulation for Molecular Communication.
    Huang Y; Wen M; Yang LL; Chae CB; Ji F
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):381-395. PubMed ID: 30892218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-MoSK Modulation in Molecular Communications.
    Kabir MH; Islam SM; Kwak KS
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):680-3. PubMed ID: 26335557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.