These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 33259847)

  • 1. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits.
    Laing BT; Siemian JN; Sarsfield S; Aponte Y
    J Neurosci Methods; 2021 Jan; 348():109015. PubMed ID: 33259847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An aspherical microlens assembly for deep brain fluorescence microendoscopy.
    Sato M; Sano S; Watanabe H; Kudo Y; Nakai J
    Biochem Biophys Res Commun; 2020 Jun; 527(2):447-452. PubMed ID: 32336546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo.
    Meng G; Liang Y; Sarsfield S; Jiang WC; Lu R; Dudman JT; Aponte Y; Ji N
    Elife; 2019 Jan; 8():. PubMed ID: 30604680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Successful In vivo Calcium Imaging with a Head-Mount Miniaturized Microscope in the Amygdala of Freely Behaving Mouse.
    Lee HS; Han JH
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32925887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Deep Brain Circuitry: New Advances in in Vivo Calcium Measurement Strategies.
    Girven KS; Sparta DR
    ACS Chem Neurosci; 2017 Feb; 8(2):243-251. PubMed ID: 27984692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniscope GRIN Lens System for Calcium Imaging of Neuronal Activity from Deep Brain Structures in Behaving Animals.
    Zhang L; Liang B; Barbera G; Hawes S; Zhang Y; Stump K; Baum I; Yang Y; Li Y; Lin DT
    Curr Protoc Neurosci; 2019 Jan; 86(1):e56. PubMed ID: 30315730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo optical microendoscopy for imaging cells lying deep within live tissue.
    Barretto RP; Schnitzer MJ
    Cold Spring Harb Protoc; 2012 Oct; 2012(10):1029-34. PubMed ID: 23028071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque.
    Bollimunta A; Santacruz SR; Eaton RW; Xu PS; Morrison JH; Moxon KA; Carmena JM; Nassi JJ
    Cell Rep; 2021 Jun; 35(11):109239. PubMed ID: 34133921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy.
    Jung JC; Mehta AD; Aksay E; Stepnoski R; Schnitzer MJ
    J Neurophysiol; 2004 Nov; 92(5):3121-33. PubMed ID: 15128753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain.
    Sato M; Motegi Y; Yagi S; Gengyo-Ando K; Ohkura M; Nakai J
    Biomed Opt Express; 2017 Sep; 8(9):4049-4060. PubMed ID: 28966846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors.
    Oh J; Lee C; Kaang BK
    Korean J Physiol Pharmacol; 2019 Jul; 23(4):237-249. PubMed ID: 31297008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging calcium imaging to illuminate circuit dysfunction in addiction.
    Siciliano CA; Tye KM
    Alcohol; 2019 Feb; 74():47-63. PubMed ID: 30470589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals.
    Malvaut S; Constantinescu VS; Dehez H; Doric S; Saghatelyan A
    Front Neurosci; 2020; 14():819. PubMed ID: 32848576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of hemodynamic signals from GCaMP fluorescence measured with wide-field imaging.
    Valley MT; Moore MG; Zhuang J; Mesa N; Castelli D; Sullivan D; Reimers M; Waters J
    J Neurophysiol; 2020 Jan; 123(1):356-366. PubMed ID: 31747332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantable graded-index fibers for neural-dynamics-resolving brain imaging in awake mice on an air-lifted platform.
    Pochechuev MS; Fedotov IV; Martynov GN; Solotenkov MA; Ivashkina OI; Rogozhnikova OS; Fedotov AB; Anokhin KV; Zheltikov AM
    J Biophotonics; 2022 Sep; 15(9):e202200025. PubMed ID: 35666011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Two-Step GRIN Lens Coating for In Vivo Brain Imaging.
    Yang Y; Zhang L; Wang Z; Liang B; Barbera G; Moffitt C; Li Y; Lin DT
    Neurosci Bull; 2019 Jun; 35(3):419-424. PubMed ID: 30852804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Compact Head-Mounted Endoscope for In Vivo Calcium Imaging in Freely Behaving Mice.
    Jacob AD; Ramsaran AI; Mocle AJ; Tran LM; Yan C; Frankland PW; Josselyn SA
    Curr Protoc Neurosci; 2018 Jul; 84(1):e51. PubMed ID: 29944206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces.
    O'Shea DJ; Trautmann E; Chandrasekaran C; Stavisky S; Kao JC; Sahani M; Ryu S; Deisseroth K; Shenoy KV
    Exp Neurol; 2017 Jan; 287(Pt 4):437-451. PubMed ID: 27511294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature Fluorescence Microscopy for Imaging Brain Activity in Freely-Behaving Animals.
    Chen S; Wang Z; Zhang D; Wang A; Chen L; Cheng H; Wu R
    Neurosci Bull; 2020 Oct; 36(10):1182-1190. PubMed ID: 32797396
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.