BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 33260138)

  • 1. Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus.
    Quon JL; Han M; Kim LH; Koran ME; Chen LC; Lee EH; Wright J; Ramaswamy V; Lober RM; Taylor MD; Grant GA; Cheshier SH; Kestle JRW; Edwards MSB; Yeom KW
    J Neurosurg Pediatr; 2020 Dec; 27(2):131-138. PubMed ID: 33260138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated 3D U-net based segmentation of neonatal cerebral ventricles from 3D ultrasound images.
    Szentimrey Z; de Ribaupierre S; Fenster A; Ukwatta E
    Med Phys; 2022 Feb; 49(2):1034-1046. PubMed ID: 34958147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.
    Jimenez-Pastor A; Lopez-Gonzalez R; Fos-Guarinos B; Garcia-Castro F; Wittenberg M; Torregrosa-Andrés A; Marti-Bonmati L; Garcia-Fontes M; Duarte P; Gambini JP; Bittencourt LK; Kitamura FC; Venugopal VK; Mahajan V; Ros P; Soria-Olivas E; Alberich-Bayarri A
    Eur Radiol; 2023 Jul; 33(7):5087-5096. PubMed ID: 36690774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.
    Ottom MA; Rahman HA; Dinov ID
    IEEE J Transl Eng Health Med; 2022; 10():1800508. PubMed ID: 35774412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume.
    Huff TJ; Ludwig PE; Salazar D; Cramer JA
    Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):1923-1932. PubMed ID: 31350705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate image-based CSF volume calculation of the lateral ventricles.
    Yepes-Calderon F; McComb JG
    Sci Rep; 2022 Jul; 12(1):12115. PubMed ID: 35840587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic brain segmentation in preterm infants with post-hemorrhagic hydrocephalus using 3D Bayesian U-Net.
    Largent A; De Asis-Cruz J; Kapse K; Barnett SD; Murnick J; Basu S; Andersen N; Norman S; Andescavage N; Limperopoulos C
    Hum Brain Mapp; 2022 Apr; 43(6):1895-1916. PubMed ID: 35023255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Ventricular System Segmentation in Paediatric Patients Treated for Hydrocephalus Using Deep Learning Methods.
    Klimont M; Flieger M; Rzeszutek J; Stachera J; Zakrzewska A; Jończyk-Potoczna K
    Biomed Res Int; 2019; 2019():3059170. PubMed ID: 31360710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-based Approach for Brainstem and Ventricular MR Planimetry: Application in Patients with Progressive Supranuclear Palsy.
    Nigro S; Filardi M; Tafuri B; Nicolardi M; De Blasi R; Giugno A; Gnoni V; Milella G; Urso D; Zoccolella S; Logroscino G; ; ;
    Radiol Artif Intell; 2024 May; 6(3):e230151. PubMed ID: 38506619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning segmentation of peri-sinus structures from structural magnetic resonance imaging: validation and normative ranges across the adult lifespan.
    Hett K; McKnight CD; Leguizamon M; Lindsey JS; Eisma JJ; Elenberger J; Stark AJ; Song AK; Aumann M; Considine CM; Claassen DO; Donahue MJ
    Fluids Barriers CNS; 2024 Feb; 21(1):15. PubMed ID: 38350930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain ventricle parcellation using a deep neural network: Application to patients with ventriculomegaly.
    Shao M; Han S; Carass A; Li X; Blitz AM; Shin J; Prince JL; Ellingsen LM
    Neuroimage Clin; 2019; 23():101871. PubMed ID: 31174103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a Fully Automated Method for Ventricular Volume Segmentation Before and After Shunt Surgery in Idiopathic Normal Pressure Hydrocephalus.
    Ziegelitz D; Hellström P; Björkman-Burtscher IM; Agerskov S; Stevens-Jones O; Farahmand D; Tullberg M
    World Neurosurg; 2024 Jan; 181():e303-e311. PubMed ID: 37838163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using Encoder-Decoder Convolutional Network.
    Kim YC; Lee JE; Yu I; Song HN; Baek IY; Seong JK; Jeong HG; Kim BJ; Nam HS; Chung JW; Bang OY; Kim GM; Seo WK
    Stroke; 2019 Jun; 50(6):1444-1451. PubMed ID: 31092169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan.
    Eisma JJ; McKnight CD; Hett K; Elenberger J; Han CJ; Song AK; Considine C; Claassen DO; Donahue MJ
    Fluids Barriers CNS; 2024 Feb; 21(1):21. PubMed ID: 38424598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression.
    Tan LK; McLaughlin RA; Lim E; Abdul Aziz YF; Liew YM
    J Magn Reson Imaging; 2018 Jul; 48(1):140-152. PubMed ID: 29316024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation and location learning of neonatal cerebral ventricles in 3D ultrasound data combining CNN and CPPN.
    Martin M; Sciolla B; Sdika M; Quétin P; Delachartre P
    Comput Biol Med; 2021 Apr; 131():104268. PubMed ID: 33639351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional Neural Network for Fully Automated Cerebellar Volumetry in Children in Comparison to Manual Segmentation and Developmental Trajectory of Cerebellar Volumes.
    Sobootian DJ; Bronzlik P; Spineli LM; Becker LS; Winther HB; Bueltmann E
    Cerebellum; 2024 Jun; 23(3):1074-1085. PubMed ID: 37833550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.