These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33260301)

  • 21. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease.
    Zhu Y; Jiang JL; Gumlaw NK; Zhang J; Bercury SD; Ziegler RJ; Lee K; Kudo M; Canfield WM; Edmunds T; Jiang C; Mattaliano RJ; Cheng SH
    Mol Ther; 2009 Jun; 17(6):954-63. PubMed ID: 19277015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breakdown of lysosomal glycogen in cultured fibroblasts from glycogenosis type II patients after uptake of acid alpha-glucosidase.
    van der Ploeg AT; Kroos M; van Dongen JM; Visser WJ; Bolhuis PA; Loonen MC; Reuser AJ
    J Neurol Sci; 1987 Jul; 79(3):327-36. PubMed ID: 3302116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.
    Khanna R; Powe AC; Lun Y; Soska R; Feng J; Dhulipala R; Frascella M; Garcia A; Pellegrino LJ; Xu S; Brignol N; Toth MJ; Do HV; Lockhart DJ; Wustman BA; Valenzano KJ
    PLoS One; 2014; 9(7):e102092. PubMed ID: 25036864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyaluronidase increases the biodistribution of acid alpha-1,4 glucosidase in the muscle of Pompe disease mice: an approach to enhance the efficacy of enzyme replacement therapy.
    Matalon R; Surendran S; Campbell GA; Michals-Matalon K; Tyring SK; Grady J; Cheng S; Kaye E
    Biochem Biophys Res Commun; 2006 Nov; 350(3):783-7. PubMed ID: 17027913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches.
    Takikita S; Myerowitz R; Zaal K; Raben N; Plotz PH
    Mol Genet Metab; 2009 Apr; 96(4):208-17. PubMed ID: 19167256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid α-Glucosidase.
    Cagin U; Puzzo F; Gomez MJ; Moya-Nilges M; Sellier P; Abad C; Van Wittenberghe L; Daniele N; Guerchet N; Gjata B; Collaud F; Charles S; Sola MS; Boyer O; Krijnse-Locker J; Ronzitti G; Colella P; Mingozzi F
    Mol Ther; 2020 Sep; 28(9):2056-2072. PubMed ID: 32526204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A beta-blocker, propranolol, decreases the efficacy from enzyme replacement therapy in Pompe disease.
    Han SO; Pope R; Li S; Kishnani PS; Steet R; Koeberl DD
    Mol Genet Metab; 2016 Feb; 117(2):114-9. PubMed ID: 26454691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficacy, safety profile, and immunogenicity of alglucosidase alfa produced at the 4,000-liter scale in US children and adolescents with Pompe disease: ADVANCE, a phase IV, open-label, prospective study.
    Hahn SH; Kronn D; Leslie ND; Pena LDM; Tanpaiboon P; Gambello MJ; Gibson JB; Hillman R; Stockton DW; Day JW; Wang RY; An Haack K; Shafi R; Sparks S; Zhao Y; Wilson C; Kishnani PS;
    Genet Med; 2018 Oct; 20(10):1284-1294. PubMed ID: 29565424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipidic Nanoparticles Comprising Phosphatidylinositol Mitigate Immunogenicity and Improve Efficacy of Recombinant Human Acid Alpha-Glucosidase in a Murine Model of Pompe Disease.
    Schneider JL; Dingman RK; Balu-Iyer SV
    J Pharm Sci; 2018 Mar; 107(3):831-837. PubMed ID: 29102549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergistic Efficacy from Gene Therapy with Coreceptor Blockade and a β2-Agonist in Murine Pompe Disease.
    Han SO; Li S; Bird A; Koeberl D
    Hum Gene Ther; 2015 Nov; 26(11):743-50. PubMed ID: 26417913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salmeterol enhances the cardiac response to gene therapy in Pompe disease.
    Han SO; Li S; Koeberl DD
    Mol Genet Metab; 2016 May; 118(1):35-40. PubMed ID: 27017193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of human lysosomal acid α-glucosidase-a guide for the treatment of Pompe disease.
    Roig-Zamboni V; Cobucci-Ponzano B; Iacono R; Ferrara MC; Germany S; Bourne Y; Parenti G; Moracci M; Sulzenbacher G
    Nat Commun; 2017 Oct; 8(1):1111. PubMed ID: 29061980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease.
    Messinger YH; Mendelsohn NJ; Rhead W; Dimmock D; Hershkovitz E; Champion M; Jones SA; Olson R; White A; Wells C; Bali D; Case LE; Young SP; Rosenberg AS; Kishnani PS
    Genet Med; 2012 Jan; 14(1):135-42. PubMed ID: 22237443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of Potent Mannose 6-Phosphate Analogues for the Functionalization of Lysosomal Enzymes To Improve the Treatment of Pompe Disease.
    El Cheikh K; Basile I; Da Silva A; Bernon C; Cérutti P; Salgues F; Perez M; Maynadier M; Gary-Bobo M; Caillaud C; Cérutti M; Garcia M; Morère A
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14774-14777. PubMed ID: 27774736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial.
    Amalfitano A; Bengur AR; Morse RP; Majure JM; Case LE; Veerling DL; Mackey J; Kishnani P; Smith W; McVie-Wylie A; Sullivan JA; Hoganson GE; Phillips JA; Schaefer GB; Charrow J; Ware RE; Bossen EH; Chen YT
    Genet Med; 2001; 3(2):132-8. PubMed ID: 11286229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Species-specific differences in the processing of acid α-glucosidase are due to the amino acid identity at position 201.
    Moreland RJ; Higgins S; Zhou A; VanStraten P; Cauthron RD; Brem M; McLarty BJ; Kudo M; Canfield WM
    Gene; 2012 Jan; 491(1):25-30. PubMed ID: 21963446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice.
    Su J; Sherman A; Doerfler PA; Byrne BJ; Herzog RW; Daniell H
    Plant Biotechnol J; 2015 Oct; 13(8):1023-32. PubMed ID: 26053072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of glycogen biosynthesis via mTORC1 suppression as an adjunct therapy for Pompe disease.
    Ashe KM; Taylor KM; Chu Q; Meyers E; Ellis A; Jingozyan V; Klinger K; Finn PF; Cooper CG; Chuang WL; Marshall J; McPherson JM; Mattaliano RJ; Cheng SH; Scheule RK; Moreland RJ
    Mol Genet Metab; 2010 Aug; 100(4):309-15. PubMed ID: 20554235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Four unreported types of glycans containing mannose-6-phosphate are heterogeneously attached at three sites (including newly found Asn 233) to recombinant human acid alpha-glucosidase that is the only approved treatment for Pompe disease.
    Park H; Kim J; Lee YK; Kim W; You SK; Do J; Jang Y; Oh DB; Il Kim J; Kim HH
    Biochem Biophys Res Commun; 2018 Jan; 495(4):2418-2424. PubMed ID: 29274340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease.
    Fukuda T; Ahearn M; Roberts A; Mattaliano RJ; Zaal K; Ralston E; Plotz PH; Raben N
    Mol Ther; 2006 Dec; 14(6):831-9. PubMed ID: 17008131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.