These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33260368)
1. Facile Fabrication of Double-Layered Electrodes for a Self-Powered Energy Conversion and Storage System. Jo S; Jayababu N; Kim D Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260368 [TBL] [Abstract][Full Text] [Related]
2. Performance-Enhanced Triboelectric Nanogenerator Based on the Double-Layered Electrode Effect. Jo S; Kim I; Jayababu N; Kim D Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260477 [TBL] [Abstract][Full Text] [Related]
3. Microwave-Assisted Hierarchically Grown Flake-like NiCo Layered Double Hydroxide Nanosheets on Transitioned Polystyrene towards Triboelectricity-Driven Self-Charging Hybrid Supercapacitors. Jo S; Kitchamsetti N; Cho H; Kim D Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679336 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Polymer Gel Electrolytes for Use in MnO Lin YH; Huang WT; Huang YT; Jhang YN; Shih TT; Yılmaz M; Deng MJ Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631495 [TBL] [Abstract][Full Text] [Related]
5. Synthesizing a Gel Polymer Electrolyte for Supercapacitors, Assembling a Supercapacitor Using a Coin Cell, and Measuring Gel Electrolyte Performance. Kwon O; Kang J; Jang S; Choi S; Eom H; Shin J; Park JK; Park S; Nam I J Vis Exp; 2022 Nov; (189):. PubMed ID: 36533837 [TBL] [Abstract][Full Text] [Related]
6. Polyvinyl alcohol-based economical triboelectric nanogenerator for self-powered energy harvesting applications. Amini S; Muktar Ahmed RFS; Ankanathappa SM; Sannathammegowda K Nanotechnology; 2023 Nov; 35(3):. PubMed ID: 37857275 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors. Ben J; Song Z; Liu X; Lü W; Li X Nanoscale Res Lett; 2020 Jul; 15(1):151. PubMed ID: 32699960 [TBL] [Abstract][Full Text] [Related]
8. Layer-by-Layer Electrode Fabrication for Improved Performance of Porous Polyimide-Based Supercapacitors. Fernando N; Veldhuizen H; Nagai A; van der Zwaag S; Abdelkader A Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009150 [TBL] [Abstract][Full Text] [Related]
9. In Situ Sputtering Silver Induction Electrode for Stable and Stretchable Triboelectric Nanogenerators. Yao J; Zhang Q; Zhang H; Li M; Lu X; Xiao Y; Yao R; Wang X Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683318 [TBL] [Abstract][Full Text] [Related]
10. Raw cellulose/polyvinyl alcohol blending separators prepared by phase inversion for high-performance supercapacitors. Heng Y; Xie T; Wang X; Chen D; Wen J; Chen X; Hu D; Wang N; Wu YA Nanotechnology; 2021 Feb; 32(9):095403. PubMed ID: 33203815 [TBL] [Abstract][Full Text] [Related]
11. Electrospun Nanofiber Covered Polystyrene Micro-Nano Hybrid Structures for Triboelectric Nanogenerator and Supercapacitor. Park J; Jo S; Kim Y; Zaman S; Kim D Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334672 [TBL] [Abstract][Full Text] [Related]
12. Unleashing Enhanced Energy Density with PANI/NiO/Graphene Nanocomposite in a Symmetric Supercapacitor Device, Powered by the Hybrid PVA/Na Haider S; Abid R; Murtaza I; Shuja A ACS Omega; 2023 Dec; 8(48):46002-46012. PubMed ID: 38075757 [TBL] [Abstract][Full Text] [Related]
13. Supercapacitor with high cycling stability through electrochemical deposition of metal-organic frameworks/polypyrrole positive electrode. Liu Y; Xu N; Chen W; Wang X; Sun C; Su Z Dalton Trans; 2018 Oct; 47(38):13472-13478. PubMed ID: 30187075 [TBL] [Abstract][Full Text] [Related]
14. Electrophoretic Fabrication of ZnO/CuO and ZnO/CuO/rGO Heterostructures-based Thin Films as Environmental Benign Flexible Electrode for Supercapacitor. Shaheen I; Hussain I; Zahra T; Memon R; Alothman AA; Ouladsmane M; Qureshi A; Niazi JH Chemosphere; 2023 May; 322():138149. PubMed ID: 36804630 [TBL] [Abstract][Full Text] [Related]
15. Advances in WO Mineo G; Bruno E; Mirabella S Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111003 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Performance of Triboelectric Nanogenerators and Sensors via Cold Spray Particle Deposition. Kim YW; Akin S; Yun H; Xu S; Wu W; Jun MB ACS Appl Mater Interfaces; 2022 Oct; 14(41):46410-46420. PubMed ID: 36198071 [TBL] [Abstract][Full Text] [Related]
17. High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Aval LF; Ghoranneviss M; Pour GB Heliyon; 2018 Nov; 4(11):e00862. PubMed ID: 30761358 [TBL] [Abstract][Full Text] [Related]
18. Supercapacitors and triboelectric nanogenerators based on electrodes of greener iron nanoparticles/carbon nanotubes composites. Dos Reis GS; de Oliveira HP; Candido ICM; Freire AL; Molaiyan P; Dotto GL; Grimm A; Mikkola JP Sci Rep; 2024 May; 14(1):11555. PubMed ID: 38773205 [TBL] [Abstract][Full Text] [Related]
19. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
20. 3D nanorhombus nickel nitride as stable and cost-effective counter electrodes for dye-sensitized solar cells and supercapacitor applications. Prasad S; Durai G; Devaraj D; AlSalhi MS; Theerthagiri J; Arunachalam P; Gurulakshmi M; Raghavender M; Kuppusami P RSC Adv; 2018 Feb; 8(16):8828-8835. PubMed ID: 35539832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]