These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 33260576)
41. Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments. Liu Y; Zheng Z; Yu L; Wu S; Sun L; Wu S; Xu Q; Cai S; Qin N; Bao W Sci Rep; 2019 Mar; 9(1):3453. PubMed ID: 30837612 [TBL] [Abstract][Full Text] [Related]
42. Integrated 16S rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-obese Type 2 Diabetic Goto-Kakizaki Rats. Peng W; Huang J; Yang J; Zhang Z; Yu R; Fayyaz S; Zhang S; Qin YH Front Microbiol; 2019; 10():3141. PubMed ID: 32038574 [TBL] [Abstract][Full Text] [Related]
44. Comparison of Fecal Microbial Composition and Antibiotic Resistance Genes from Swine, Farm Workers and the Surrounding Villagers. Sun J; Huang T; Chen C; Cao TT; Cheng K; Liao XP; Liu YH Sci Rep; 2017 Jul; 7(1):4965. PubMed ID: 28694474 [TBL] [Abstract][Full Text] [Related]
45. Composition and functional diversity of fecal bacterial community of wild boar, commercial pig and domestic native pig as revealed by 16S rRNA gene sequencing. Huang J; Zhang W; Fan R; Liu Z; Huang T; Li J; Du T; Xiong T Arch Microbiol; 2020 May; 202(4):843-857. PubMed ID: 31894392 [TBL] [Abstract][Full Text] [Related]
46. Dietary changes in nutritional studies shape the structural and functional composition of the pigs' fecal microbiome-from days to weeks. Tilocca B; Burbach K; Heyer CME; Hoelzle LE; Mosenthin R; Stefanski V; Camarinha-Silva A; Seifert J Microbiome; 2017 Oct; 5(1):144. PubMed ID: 29078812 [TBL] [Abstract][Full Text] [Related]
47. Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. Müller M; Hermes GDA; Canfora EE; Smidt H; Masclee AAM; Zoetendal EG; Blaak EE Am J Physiol Gastrointest Liver Physiol; 2020 Feb; 318(2):G361-G369. PubMed ID: 31869241 [TBL] [Abstract][Full Text] [Related]
48. Cecal versus fecal microbiota in Ossabaw swine and implications for obesity. Panasevich MR; Wankhade UD; Chintapalli SV; Shankar K; Rector RS Physiol Genomics; 2018 May; 50(5):355-368. PubMed ID: 29521600 [TBL] [Abstract][Full Text] [Related]
49. Impact of a probiotic, inulin, or their combination on the piglets' microbiota at different intestinal locations. Sattler VA; Bayer K; Schatzmayr G; Haslberger AG; Klose V Benef Microbes; 2015; 6(4):473-83. PubMed ID: 25380797 [TBL] [Abstract][Full Text] [Related]
50. Analysis of the infant gut microbiome reveals metabolic functional roles associated with healthy infants and infants with atopic dermatitis using metaproteomics. Kingkaw A; Nakphaichit M; Suratannon N; Nitisinprasert S; Wongoutong C; Chatchatee P; Krobthong S; Charoenlappanit S; Roytrakul S; Vongsangnak W PeerJ; 2020; 8():e9988. PubMed ID: 33033661 [TBL] [Abstract][Full Text] [Related]
51. Helicobacter pylori Eradication Causes Perturbation of the Human Gut Microbiome in Young Adults. Yap TW; Gan HM; Lee YP; Leow AH; Azmi AN; Francois F; Perez-Perez GI; Loke MF; Goh KL; Vadivelu J PLoS One; 2016; 11(3):e0151893. PubMed ID: 26991500 [TBL] [Abstract][Full Text] [Related]
52. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Kang DW; Ilhan ZE; Isern NG; Hoyt DW; Howsmon DP; Shaffer M; Lozupone CA; Hahn J; Adams JB; Krajmalnik-Brown R Anaerobe; 2018 Feb; 49():121-131. PubMed ID: 29274915 [TBL] [Abstract][Full Text] [Related]
53. Addition of arabinoxylan and mixed linkage glucans in porcine diets affects the large intestinal bacterial populations. Gorham JB; Kang S; Williams BA; Grant LJ; McSweeney CS; Gidley MJ; Mikkelsen D Eur J Nutr; 2017 Sep; 56(6):2193-2206. PubMed ID: 27401929 [TBL] [Abstract][Full Text] [Related]
55. M2IA: a web server for microbiome and metabolome integrative analysis. Ni Y; Yu G; Chen H; Deng Y; Wells PM; Steves CJ; Ju F; Fu J Bioinformatics; 2020 Jun; 36(11):3493-3498. PubMed ID: 32176258 [TBL] [Abstract][Full Text] [Related]
56. Fecal microbiome signatures are different in food-allergic children compared to siblings and healthy children. Kourosh A; Luna RA; Balderas M; Nance C; Anagnostou A; Devaraj S; Davis CM Pediatr Allergy Immunol; 2018 Aug; 29(5):545-554. PubMed ID: 29624747 [TBL] [Abstract][Full Text] [Related]
57. Suhuai suckling piglet hindgut microbiome-metabolome responses to different dietary copper levels. Zhang F; Zheng W; Xue Y; Yao W Appl Microbiol Biotechnol; 2019 Jan; 103(2):853-868. PubMed ID: 30535578 [TBL] [Abstract][Full Text] [Related]
58. Functional dynamics of bacterial species in the mouse gut microbiome revealed by metagenomic and metatranscriptomic analyses. Chung YW; Gwak HJ; Moon S; Rho M; Ryu JH PLoS One; 2020; 15(1):e0227886. PubMed ID: 31978162 [TBL] [Abstract][Full Text] [Related]
59. Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease. Mohan M; Chow CT; Ryan CN; Chan LS; Dufour J; Aye PP; Blanchard J; Moehs CP; Sestak K Nutrients; 2016 Oct; 8(11):. PubMed ID: 27801835 [TBL] [Abstract][Full Text] [Related]
60. Intestinal aganglionosis is associated with early and sustained disruption of the colonic microbiome. Ward NL; Pieretti A; Dowd SE; Cox SB; Goldstein AM Neurogastroenterol Motil; 2012 Sep; 24(9):874-e400. PubMed ID: 22626027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]