These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33260624)

  • 1. The Role of Features Types and Personalized Assessment in Detecting Affective State Using Dry Electrode EEG.
    Pradhapan P; Velazquez ER; Witteveen JA; Tonoyan Y; Mihajlović V
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device.
    Mai ND; Lee BG; Chung WY
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine.
    Candra H; Yuwono M; Chai R; Handojoseno A; Elamvazuthi I; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7250-3. PubMed ID: 26737965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognizing emotions from EEG subbands using wavelet analysis.
    Candra H; Yuwono M; Handojoseno A; Chai R; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6030-3. PubMed ID: 26737666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG emotion recognition using reduced channel wavelet entropy and average wavelet coefficient features with normal Mutual Information method.
    Candra H; Yuwono M; Chai R; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():463-466. PubMed ID: 29059910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Exact Valence and Arousal Values from EEG.
    Galvão F; Alarcão SM; Fonseca MJ
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNN and LSTM-Based Emotion Charting Using Physiological Signals.
    Dar MN; Akram MU; Khawaja SG; Pujari AN
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroencephalography Amplitude Modulation Analysis for Automated Affective Tagging of Music Video Clips.
    Clerico A; Tiwari A; Gupta R; Jayaraman S; Falk TH
    Front Comput Neurosci; 2017; 11():115. PubMed ID: 29367844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wearable In-Ear EEG Device for Emotion Monitoring.
    Athavipach C; Pan-Ngum S; Israsena P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring EEG microstates for affective computing: decoding valence and arousal experiences during video watching
    Shen X; Hu X; Liu S; Song S; Zhang D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():841-846. PubMed ID: 33018116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emotion Recognition in EEG Signals Using Decision Fusion Based Electrode Selection.
    Kumar H; Ganapathy N; Puthankattil SD; Swaminathan R
    Stud Health Technol Inform; 2021 May; 281():153-157. PubMed ID: 34042724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [An Electroencephalogram-driven Personalized Affective Music Player System: Algorithms and Preliminary Implementation].
    Ma Y; Li J; Lu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):38-41. PubMed ID: 27382737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability.
    Di Flumeri G; Aricò P; Borghini G; Sciaraffa N; Di Florio A; Babiloni F
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30893791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Method of Automated EEG Signals' Selection Using Reversed Correlation Algorithm for Improved Classification of Emotions.
    Wosiak A; Dura A
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online Learning for Wearable EEG-Based Emotion Classification.
    Moontaha S; Schumann FEF; Arnrich B
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arousal-Valence Classification from Peripheral Physiological Signals Using Long Short-Term Memory Networks.
    Zitouni MS; Park CY; Lee U; Hadjileontiadis L; Khandoker A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():686-689. PubMed ID: 34891385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine.
    Liu YH; Wu CT; Kao YH; Chen YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4306-9. PubMed ID: 24110685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test-Retest Reliability of Time-Domain EEG Features to Assess Cognitive Load Using a Wireless Dry-Electrode System.
    Ortiz O; Blustein D; Kuruganti U
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2885-2888. PubMed ID: 33018609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-based recognition of video-induced emotions: selecting subject-independent feature set.
    Kortelainen J; Seppänen T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4287-90. PubMed ID: 24110680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.