These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33260643)

  • 1. A Computational Framework Based on Ensemble Deep Neural Networks for Essential Genes Identification.
    Le NQK; Do DT; Hung TNK; Lam LHT; Huynh TT; Nguyen NTK
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X; Xiao W; Xiao W
    PLoS Comput Biol; 2020 Sep; 16(9):e1008229. PubMed ID: 32936825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks.
    Nguyen QH; Nguyen-Vo TH; Le NQK; Do TTT; Rahardja S; Nguyen BP
    BMC Genomics; 2019 Dec; 20(Suppl 9):951. PubMed ID: 31874637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm.
    Song J; Liu G; Jiang J; Zhang P; Liang Y
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using k-mer embeddings learned from a Skip-gram based neural network for building a cross-species DNA N6-methyladenine site prediction model.
    Nguyen TTD; Trinh VN; Le NQK; Ou YY
    Plant Mol Biol; 2021 Dec; 107(6):533-542. PubMed ID: 34843033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning framework for enhancer prediction using word embedding and sequence generation.
    Geng Q; Yang R; Zhang L
    Biophys Chem; 2022 Jul; 286():106822. PubMed ID: 35605495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepPGD: A Deep Learning Model for DNA Methylation Prediction Using Temporal Convolution, BiLSTM, and Attention Mechanism.
    Teragawa S; Wang L; Liu Y
    Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepEP: a deep learning framework for identifying essential proteins.
    Zeng M; Li M; Wu FX; Li Y; Pan Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):506. PubMed ID: 31787076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble of Deep Recurrent Neural Networks for Identifying Enhancers via Dinucleotide Physicochemical Properties.
    Tan KK; Le NQK; Yeh HY; Chua MCH
    Cells; 2019 Jul; 8(7):. PubMed ID: 31340596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features.
    Mahmud SMH; Goh KOM; Hosen MF; Nandi D; Shoombuatong W
    Sci Rep; 2024 Feb; 14(1):2961. PubMed ID: 38316843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning and machine learning predictive models for neurological function after interventional embolization of intracranial aneurysms.
    Peng Y; Wang Y; Wen Z; Xiang H; Guo L; Su L; He Y; Pang H; Zhou P; Zhan X
    Front Neurol; 2024; 15():1321923. PubMed ID: 38327618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal deep representation learning for protein interaction identification and protein family classification.
    Zhang D; Kabuka M
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):531. PubMed ID: 31787089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning models predicting multidrug resistant urinary tract infections using "DsaaS".
    Mancini A; Vito L; Marcelli E; Piangerelli M; De Leone R; Pucciarelli S; Merelli E
    BMC Bioinformatics; 2020 Aug; 21(Suppl 10):347. PubMed ID: 32838752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DEEPSMP: A deep learning model for predicting the ectodomain shedding events of membrane proteins.
    Cao Z; Du W; Li G; Cao H
    J Bioinform Comput Biol; 2020 Jun; 18(3):2050017. PubMed ID: 32576054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep transformers and convolutional neural network in identifying DNA N6-methyladenine sites in cross-species genomes.
    Le NQK; Ho QT
    Methods; 2022 Aug; 204():199-206. PubMed ID: 34915158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy.
    Xie R; Li J; Wang J; Dai W; Leier A; Marquez-Lago TT; Akutsu T; Lithgow T; Song J; Zhang Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32599617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepBCE: Evaluation of deep learning models for identification of immunogenic B-cell epitopes.
    Attique M; Alkhalifah T; Alturise F; Khan YD
    Comput Biol Chem; 2023 Jun; 104():107874. PubMed ID: 37126975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.