These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33260673)

  • 1. Microfluidic Tumor-on-a-Chip Model to Study Tumor Metabolic Vulnerability.
    Ayuso JM; Rehman S; Farooqui M; Virumbrales-Muñoz M; Setaluri V; Skala MC; Beebe DJ
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-on-a-chip: a microfluidic model to study cell response to environmental gradients.
    Ayuso JM; Virumbrales-Munoz M; McMinn PH; Rehman S; Gomez I; Karim MR; Trusttchel R; Wisinski KB; Beebe DJ; Skala MC
    Lab Chip; 2019 Oct; 19(20):3461-3471. PubMed ID: 31506657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organotypic microfluidic breast cancer model reveals starvation-induced spatial-temporal metabolic adaptations.
    Ayuso JM; Gillette A; Lugo-Cintrón K; Acevedo-Acevedo S; Gomez I; Morgan M; Heaster T; Wisinski KB; Palecek SP; Skala MC; Beebe DJ
    EBioMedicine; 2018 Nov; 37():144-157. PubMed ID: 30482722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleanroom-Free Microfluidic Device for Natural Induction of Hypoxia in 2D and 3D Tumor Models.
    Oh JM; Shen K
    Methods Mol Biol; 2024; 2755():227-247. PubMed ID: 38319582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion.
    Ayuso JM; Rehman S; Virumbrales-Munoz M; McMinn PH; Geiger P; Fitzgerald C; Heaster T; Skala MC; Beebe DJ
    Sci Adv; 2021 Feb; 7(8):. PubMed ID: 33597234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics.
    Liu W; Wang JC; Wang J
    Lab Chip; 2015 Feb; 15(4):1195-204. PubMed ID: 25571856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Switching of Tumor Cells under Hypoxic Conditions in a Tumor-on-a-chip Model.
    Palacio-Castañeda V; Kooijman L; Venzac B; Verdurmen WPR; Le Gac S
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Device to Quantify the Behavior of Therapeutic Bacteria in Three-Dimensional Tumor Tissue.
    Brackett EL; Swofford CA; Forbes NS
    Methods Mol Biol; 2016; 1409():35-48. PubMed ID: 26846800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches.
    Sleeboom JJF; Eslami Amirabadi H; Nair P; Sahlgren CM; den Toonder JMJ
    Dis Model Mech; 2018 Mar; 11(3):. PubMed ID: 29555848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in 3D Vascularized Tumor-on-a-Chip Technology.
    Jung S; Jo H; Hyung S; Jeon NL
    Adv Exp Med Biol; 2022; 1379():231-256. PubMed ID: 35760994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic design for in-vitro liver zonation-a numerical analysis using COMSOL Multiphysics.
    Mahdavi R; Hashemi-Najafabadi S; Ghiass MA; Adiels CB
    Med Biol Eng Comput; 2024 Jan; 62(1):121-133. PubMed ID: 37733153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications.
    Bunge F; Driesche SVD; Vellekoop MJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device.
    Lee SW; Hong S; Jung B; Jeong SY; Byeon JH; Jeong GS; Choi J; Hwang C
    Biotechnol Bioeng; 2019 Nov; 116(11):3041-3052. PubMed ID: 31294818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational model of the cancer necrotic core formation in a tumor-on-a-chip device.
    Bonifácio ED; Araújo CA; Guimarães MV; de Souza MP; Lima TP; de Avelar Freitas BA; González-Torres LA
    J Theor Biol; 2024 Sep; 592():111893. PubMed ID: 38944380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass.
    Wang S; Mao S; Li M; Li HF; Lin JM
    Talanta; 2019 Jan; 191():67-73. PubMed ID: 30262100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal pattern of glucose in a microfluidic device depend on the porosity and permeability of the medium: A finite element study.
    Bonifácio ED; González-Torres LA; Meireles AB; Guimarães MV; Araujo CA
    Comput Methods Programs Biomed; 2019 Dec; 182():105039. PubMed ID: 31472476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process.
    Baye J; Galvin C; Shen AQ
    Biomed Microdevices; 2017 Sep; 19(3):59. PubMed ID: 28667400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer Modeling-on-a-Chip with Future Artificial Intelligence Integration.
    Fetah KL; DiPardo BJ; Kongadzem EM; Tomlinson JS; Elzagheid A; Elmusrati M; Khademhosseini A; Ashammakhi N
    Small; 2019 Dec; 15(50):e1901985. PubMed ID: 31724305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recapitulating Tumor Hypoxia in a Cleanroom-Free, Liquid-Pinning-Based Microfluidic Tumor Model.
    Oh JM; Begum HM; Liu YL; Ren Y; Shen K
    ACS Biomater Sci Eng; 2022 Jul; 8(7):3107-3121. PubMed ID: 35678715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.