These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33260744)

  • 1. Perfect Impedance Matching with Meta-Surfaces Made of Ultra-Thin Metal Films: A Phenomenological Approach to the Ideal THz Sensors.
    Zhang B; Liu Y; Luo Y; Kusmartsev FV; Kusmartseva A
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on the optical properties of ultra-thin metal films in the THz band].
    Ma FY; Chi Q; Su JP; Du YL; Zhang WW; Chen M; Liu JL; Guo MT; Yuan B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Mar; 32(3):610-3. PubMed ID: 22582616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical-Transparent Self-Assembled MXene Film with High-Efficiency Terahertz Reflection Modulation.
    Feng T; Huang W; Zhu H; Lu X; Das S; Shi Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10574-10582. PubMed ID: 33605142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antireflection self-reference method based on ultrathin metallic nanofilms for improving terahertz reflection spectroscopy.
    Lai W; Cao H; Yang J; Deng G; Yin Z; Zhang Q; Pelaz B; Del Pino P
    Opt Express; 2018 Jul; 26(15):19470-19478. PubMed ID: 30114118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic wave-impedance matching layers for broadband terahertz optical systems.
    Kröll J; Darmo J; Unterrainer K
    Opt Express; 2007 May; 15(11):6552-60. PubMed ID: 19546963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon carbide as a material-based high-impedance surface for enhanced absorption within ultra-thin metallic films.
    Pérez-Escudero JM; Buldain I; Beruete M; Goicoechea J; Liberal I
    Opt Express; 2020 Oct; 28(21):31624-31636. PubMed ID: 33115132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active broadband terahertz wave impedance matching based on optically doped graphene-silicon heterojunction.
    Du W; Zhou Y; Yao Z; Huang Y; He C; Zhang L; He Y; Zhu L; Xu X
    Nanotechnology; 2019 May; 30(19):195705. PubMed ID: 30699402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Nano-Optics in the Terahertz Gap.
    Feres FH; Barcelos ID; Cadore AR; Wehmeier L; Nörenberg T; Mayer RA; Freitas RO; Eng LM; Kehr SC; Maia FCB
    Nano Lett; 2023 May; 23(9):3913-3920. PubMed ID: 37126430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfect anti-reflection from first principles.
    Kim KH; Park QH
    Sci Rep; 2013; 3():1062. PubMed ID: 23320143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links.
    Yang F; Pitchappa P; Wang N
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure.
    Peng Y; Zang X; Zhu Y; Shi C; Chen L; Cai B; Zhuang S
    Opt Express; 2015 Feb; 23(3):2032-9. PubMed ID: 25836074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy.
    Sun Y; Yang S; Du P; Yan F; Qu J; Zhu Z; Zuo J; Zhang C
    Opt Express; 2017 Feb; 25(3):1723-1731. PubMed ID: 29519026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films.
    Bolakis C; Grbovic D; Lavrik NV; Karunasiri G
    Opt Express; 2010 Jul; 18(14):14488-95. PubMed ID: 20639934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THz characterization and demonstration of visible-transparent/terahertz-functional electromagnetic structures in ultra-conductive La-doped BaSnO
    Arezoomandan S; Prakash A; Chanana A; Yue J; Mao J; Blair S; Nahata A; Jalan B; Sensale-Rodriguez B
    Sci Rep; 2018 Feb; 8(1):3577. PubMed ID: 29476173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly nonlinear organic crystal OHQ-T for efficient ultra-broadband terahertz wave generation beyond 10 THz.
    Kang BJ; Baek IH; Lee SH; Kim WT; Lee SJ; Jeong YU; Kwon OP; Rotermund F
    Opt Express; 2016 May; 24(10):11054-61. PubMed ID: 27409928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in two-dimensional materials for terahertz protection.
    Pan J; Hu H; Li Z; Mu J; Cai Y; Zhu H
    Nanoscale Adv; 2021 Mar; 3(6):1515-1531. PubMed ID: 36132557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing.
    You B; Peng CC; Jhang JS; Chen HH; Yu CP; Lai WC; Liu TA; Peng JL; Lu JY
    Opt Express; 2014 May; 22(9):11340-50. PubMed ID: 24921831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Terahertz Transparent Graphene-Based Absorber.
    D'Aloia AG; D'Amore M; Sarto MS
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32353933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves.
    Lu T; Zhang D; Qiu P; Lian J; Jing M; Yu B; Wen J; Zhuang S
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30404174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.