These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33260793)

  • 1. Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements.
    Machrowska A; Szabelski J; Karpiński R; Krakowski P; Jonak J; Jonak K
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate) Bone Cement.
    Rodriguez LC; Chari J; Aghyarian S; Gindri IM; Kosmopoulos V; Rodrigues DC
    Materials (Basel); 2014 Sep; 7(9):6779-6795. PubMed ID: 28788212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.
    Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H
    J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-beta1 incorporation in a calcium phosphate bone cement: material properties and release characteristics.
    Blom EJ; Klein-Nulend J; Wolke JG; van Waas MA; Driessens FC; Burger EH
    J Biomed Mater Res; 2002 Feb; 59(2):265-72. PubMed ID: 11745562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Contaminating Poly (Methyl Methacrylate) (PMMA) Bone Cements on Their Compressive Strength.
    Szabelski J; Karpiński R; Krakowski P; Jonak J
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Effect of Selected Physiological Fluid Contaminants on the Mechanical Properties of Selected Medium-Viscosity PMMA Bone Cements.
    Karpiński R; Szabelski J; Krakowski P; Jojczuk M; Jonak J; Nogalski A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Physiological Saline Solution Contamination on Selected Mechanical Properties of Seasoned Acrylic Bone Cements of Medium and High Viscosity.
    Karpiński R; Szabelski J; Krakowski P; Jonak J
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33383870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty.
    Vlad MD; del Valle LJ; Barracó M; Torres R; López J; Fernández E
    Spine (Phila Pa 1976); 2008 Oct; 33(21):2290-8. PubMed ID: 18827693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning for computational chemistry.
    Goh GB; Hodas NO; Vishnu A
    J Comput Chem; 2017 Jun; 38(16):1291-1307. PubMed ID: 28272810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of acid etching procedures on the compressive strength of 4 calcium silicate-based endodontic cements.
    Kayahan MB; Nekoofar MH; McCann A; Sunay H; Kaptan RF; Meraji N; Dummer PM
    J Endod; 2013 Dec; 39(12):1646-8. PubMed ID: 24238465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement.
    Karpiński R; Szabelski J; Maksymiuk J
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31795371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Evaluation of Sorption, Solubility, and Compressive Strength of Three Different Glass Ionomer Cements in Artificial Saliva: An
    Bhatia HP; Singh S; Sood S; Sharma N
    Int J Clin Pediatr Dent; 2017; 10(1):49-54. PubMed ID: 28377656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylic bone cements: mechanical and physical properties.
    Kuehn KD; Ege W; Gopp U
    Orthop Clin North Am; 2005 Jan; 36(1):29-39, v-vi. PubMed ID: 15542120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advantages and Application Prospects of Deep Learning in Image Recognition and Bone Age Assessment].
    Hu TH; Wan L; Liu TA; Wang MW; Chen T; Wang YH
    Fa Yi Xue Za Zhi; 2017 Dec; 33(6):629-634. PubMed ID: 29441773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of polymeric additives on the mechanical properties of alpha-tricalcium phosphate cement.
    dos Santos LA; De Oliveria LC; Rigo EC; Carrodeguas RG; Boschi AO; De Arruda AC
    Bone; 1999 Aug; 25(2 Suppl):99S-102S. PubMed ID: 10458286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive mechanical properties and cytocompatibility of bone-compliant, linoleic acid-modified bone cement in a bovine model.
    López A; Mestres G; Karlsson Ott M; Engqvist H; Ferguson SJ; Persson C; Helgason B
    J Mech Behav Biomed Mater; 2014 Apr; 32():245-256. PubMed ID: 24508711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of dental luting cements.
    Li ZC; White SN
    J Prosthet Dent; 1999 May; 81(5):597-609. PubMed ID: 10220666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.