These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33260821)

  • 1. Development of a Wireless Telemetry Sensor Device to Measure Load and Deformation in Orthopaedic Applications.
    Anderson WD; Wilson SLM; Holdsworth DW
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive wireless MEMS microphones for biomedical applications.
    Sezen AS; Sivaramakrishnan S; Hur S; Rajamani R; Robbins W; Nelson BJ
    J Biomech Eng; 2005 Nov; 127(6):1030-4. PubMed ID: 16438245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.
    Ozbey B; Demir HV; Kurc O; Erturk VB; Altintas A
    Sensors (Basel); 2014 Oct; 14(10):19609-21. PubMed ID: 25333292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A closed-loop inductive power control system for an instrumented strain sensing tibial implant.
    Shiying Hao ; Taylor S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6553-6. PubMed ID: 25571497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.
    DeHennis A; Getzlaff S; Grice D; Mailand M
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):18-28. PubMed ID: 26372659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of modern sensors and wireless technology in effective wound management.
    Mehmood N; Hariz A; Fitridge R; Voelcker NH
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):885-95. PubMed ID: 24142514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel strain gauge telemetry for orthopaedic implants.
    Bergmann G; Graichen F; Siraky J; Jendrzynski H; Rohlmann A
    J Biomech; 1988; 21(2):169-76. PubMed ID: 3350830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concept, design and fabrication of smart orthopedic implants.
    Burny F; Donkerwolcke M; Moulart F; Bourgois R; Puers R; Van Schuylenbergh K; Barbosa M; Paiva O; Rodes F; Bégueret JB; Lawes P
    Med Eng Phys; 2000 Sep; 22(7):469-79. PubMed ID: 11165144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implantable 9-channel telemetry system for in vivo load measurements with orthopedic implants.
    Graichen F; Arnold R; Rohlmann A; Bergmann G
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):253-61. PubMed ID: 17278582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants.
    Lin YP; Tang KT
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):435-44. PubMed ID: 26285218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCIMITAR: subject-carried implant monitoring inductive telemetric ambulatory reader for remote data acquisition from implanted orthopaedic prostheses.
    Hao S; Gorjon J; Taylor S
    Med Eng Phys; 2014 Mar; 36(3):405-11. PubMed ID: 24064041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose Monitoring in Individuals With Diabetes Using a Long-Term Implanted Sensor/Telemetry System and Model.
    Lucisano JY; Routh TL; Lin JT; Gough DA
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):1982-1993. PubMed ID: 27775510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable patient monitoring application (ECG) using wireless sensor networks.
    Taylor SA; Sharif H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5977-80. PubMed ID: 17947174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and calibration of load sensing orthopaedic implants.
    Bergmann G; Graichen F; Rohlmann A; Westerhoff P; Heinlein B; Bender A; Ehrig R
    J Biomech Eng; 2008 Apr; 130(2):021009. PubMed ID: 18412496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple implantable wireless sensor platform to measure pressure and force.
    Drazan JF; Abdoun OT; Wassick MT; Dahle R; Beardslee L; Marcus GA; Cady NC; Ledet EH
    Med Eng Phys; 2018 Sep; 59():81-87. PubMed ID: 30064939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telemetry in intracranial pressure monitoring: sensor survival and drift.
    Norager NH; Lilja-Cyron A; Bjarkam CR; Duus S; Juhler M
    Acta Neurochir (Wien); 2018 Nov; 160(11):2137-2144. PubMed ID: 30267207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piezoresistive pressure sensors in the measurement of intervertebral disc hydrostatic pressure.
    Moore MK; Fulop S; Tabib-Azar M; Hart DJ
    Spine J; 2009 Dec; 9(12):1030-4. PubMed ID: 19837007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor.
    Murphy OH; Bahmanyar MR; Borghi A; McLeod CN; Navaratnarajah M; Yacoub MH; Toumazou C
    Biomed Microdevices; 2013 Oct; 15(5):737-49. PubMed ID: 23559403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A telemetric pressure sensor system for biomedical applications.
    Ginggen A; Tardy Y; Crivelli R; Bork T; Renaud P
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1374-81. PubMed ID: 18390328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Configurable Wireless Sensor System for Biomedical Applications with ISO 18000-3 Interface in 0.35 µm CMOS.
    Fedtschenko T; Utz A; Stanitzki A; Hennig A; Lüdecke A; Haas N; Kokozinski R
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.