These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33260876)

  • 1. Analysis of Biological Screening Compounds with Single- or Multi-Target Activity via Diagnostic Machine Learning.
    Feldmann C; Yonchev D; Bajorath J
    Biomolecules; 2020 Nov; 10(12):. PubMed ID: 33260876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Data Analysis and Diagnostic Machine Learning Reveal Differences between Compounds with Single- and Multitarget Activity.
    Feldmann C; Yonchev D; Stumpfe D; Bajorath J
    Mol Pharm; 2020 Dec; 17(12):4652-4666. PubMed ID: 33151084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Promiscuity Cliffs Using Machine Learning.
    Blaschke T; Feldmann C; Bajorath J
    Mol Inform; 2021 Jan; 40(1):e2000196. PubMed ID: 32881355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity profile relationships between structurally similar promiscuous compounds.
    Hu Y; Bajorath J
    Eur J Med Chem; 2013 Nov; 69():393-8. PubMed ID: 24077530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome.
    Miljković F; Bajorath J
    J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations.
    Feldmann C; Bajorath J
    Sci Rep; 2021 Apr; 11(1):7863. PubMed ID: 33846469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the Degree of Promiscuity of Extensively Assayed Compounds.
    Jasial S; Hu Y; Bajorath J
    PLoS One; 2016; 11(4):e0153873. PubMed ID: 27082988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explaining Accurate Predictions of Multitarget Compounds with Machine Learning Models Derived for Individual Targets.
    Lamens A; Bajorath J
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Promiscuity Relationship Puzzles-Extensively Assayed Analogs with Large Differences in Target Annotations.
    Hu Y; Jasial S; Gilberg E; Bajorath J
    AAPS J; 2017 May; 19(3):856-864. PubMed ID: 28265982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured data sets of compounds with multi-target and corresponding single-target activity from biological assays.
    Feldmann C; Yonchev D; Bajorath J
    Future Sci OA; 2021 Mar; 7(5):FSO685. PubMed ID: 34046190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.
    Ma XH; Jia J; Zhu F; Xue Y; Li ZR; Chen YZ
    Comb Chem High Throughput Screen; 2009 May; 12(4):344-57. PubMed ID: 19442064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2020 Oct; 34(10):1013-1026. PubMed ID: 32361862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning in chemoinformatics and drug discovery.
    Lo YC; Rensi SE; Torng W; Altman RB
    Drug Discov Today; 2018 Aug; 23(8):1538-1546. PubMed ID: 29750902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiating Inhibitors of Closely Related Protein Kinases with Single- or Multi-Target Activity via Explainable Machine Learning and Feature Analysis.
    Feldmann C; Bajorath J
    Biomolecules; 2022 Apr; 12(4):. PubMed ID: 35454147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2021 Mar; 35(3):285-295. PubMed ID: 33598870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Promiscuous Compounds with Activity against Different Target Classes.
    Feldmann C; Miljković F; Yonchev D; Bajorath J
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31752252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is the likelihood of an active compound to be promiscuous? Systematic assessment of compound promiscuity on the basis of PubChem confirmatory bioassay data.
    Hu Y; Bajorath J
    AAPS J; 2013 Jul; 15(3):808-15. PubMed ID: 23605807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.
    Jasial S; Gilberg E; Blaschke T; Bajorath J
    J Med Chem; 2018 Nov; 61(22):10255-10264. PubMed ID: 30422657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-tuning of a generative neural network for designing multi-target compounds.
    Blaschke T; Bajorath J
    J Comput Aided Mol Des; 2022 May; 36(5):363-371. PubMed ID: 34046745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.