BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 33260941)

  • 1. Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells.
    Janitschke D; Lauer AA; Bachmann CM; Seyfried M; Grimm HS; Hartmann T; Grimm MOW
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylxanthines Induce a Change in the AD/Neurodegeneration-Linked Lipid Profile in Neuroblastoma Cells.
    Janitschke D; Lauer AA; Bachmann CM; Winkler J; Griebsch LV; Pilz SM; Theiss EL; Grimm HS; Hartmann T; Grimm MOW
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Caffeine and Other Methylxanthines on Aβ-Homeostasis in SH-SY5Y Cells.
    Janitschke D; Nelke C; Lauer AA; Regner L; Winkler J; Thiel A; Grimm HS; Hartmann T; Grimm MOW
    Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31684105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylxanthines and Neurodegenerative Diseases: An Update.
    Janitschke D; Lauer AA; Bachmann CM; Grimm HS; Hartmann T; Grimm MOW
    Nutrients; 2021 Feb; 13(3):. PubMed ID: 33671099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks.
    Monteiro JP; Alves MG; Oliveira PF; Silva BM
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27472311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology of the interactions pattern in pharmaceutically relevant polymorphs of methylxanthines (caffeine, theobromine, and theophiline): combined experimental (¹H-¹⁴N nuclear quadrupole double resonance) and computational (DFT and Hirshfeld-based) study.
    Latosińska JN; Latosińska M; Olejniczak GA; Seliger J; Žagar V
    J Chem Inf Model; 2014 Sep; 54(9):2570-84. PubMed ID: 25184363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the effects of caffeine and other methylxanthines on [Ca2+]i in rat ventricular myocytes.
    Donoso P; O'Neill SC; Dilly KW; Negretti N; Eisner DA
    Br J Pharmacol; 1994 Feb; 111(2):455-8. PubMed ID: 8004389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeine, theophylline, theobromine, and developmental growth of the mouse mammary gland.
    VanderPloeg LC; Wolfrom DM; Rao AR; Braselton WE; Welsch CW
    J Environ Pathol Toxicol Oncol; 1992; 11(3):177-89. PubMed ID: 1625188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of pentoxifylline, A-802710, propentofylline and A-802715 (Hoechst) on the expression of cell cycle blocks and S-phase content after irradiation damage.
    Bohm L; Theron T; Binder A
    Biochim Biophys Acta; 2000 Dec; 1499(1-2):1-10. PubMed ID: 11118634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic effects of xanthines on levels of central receptors in mice.
    Shi D; Daly JW
    Cell Mol Neurobiol; 1999 Dec; 19(6):719-32. PubMed ID: 10456233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5.
    Yu CL; Louie TM; Summers R; Kale Y; Gopishetty S; Subramanian M
    J Bacteriol; 2009 Jul; 191(14):4624-32. PubMed ID: 19447909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of methylxanthines on chromosomes of human lyphocytes in culture.
    Weinstein D; Mauer I; Katz ML; Kazmer S
    Mutat Res; 1975 Feb; 31(1):57-61. PubMed ID: 1128545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of methylxanthines in the competition horse: pharmacokinetic/pharmacodynamic studies on caffeine, theobromine and theophylline for the assessment of irrelevant concentrations.
    Machnik M; Kaiser S; Koppe S; Kietzmann M; Schenk I; Düe M; Thevis M; Schänzer W; Toutain PL
    Drug Test Anal; 2017 Sep; 9(9):1372-1384. PubMed ID: 27662634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inherent differences in sensitivity to methylxanthines among inbred mice.
    Logan L; Seale TW; Carney JM
    Pharmacol Biochem Behav; 1986 May; 24(5):1281-6. PubMed ID: 3725830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discriminative stimulus properties of methylxanthines and their metabolites in rats.
    Carney JM; Holloway FA; Modrow HE
    Life Sci; 1985 Mar; 36(10):913-20. PubMed ID: 3974401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of methylxanthines on glycine-induced Cl current in dissociated rat hippocampal neurons.
    Kawa K; Uneyama H; Akaike N
    Ann N Y Acad Sci; 1993 Dec; 707():449-53. PubMed ID: 9137592
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of methylxanthines on lactational performance of rats.
    Hart AD; Grimble RF
    Ann Nutr Metab; 1990; 34(5):297-302. PubMed ID: 2244750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the body fat percentage in developmental-stage rats by methylxanthine derivatives in a high-fat diet.
    Inoue H; Kobayashi-Hattori K; Horiuchi Y; Oishi Y; Arai S; Takita T
    Biosci Biotechnol Biochem; 2006 May; 70(5):1134-9. PubMed ID: 16717413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of methylxanthines on the hypocoagulability induced by chloroform in the dog.
    FIELD JB; GRAF L; LINK KP
    Blood; 1952 Apr; 7(4):445-53. PubMed ID: 14915989
    [No Abstract]   [Full Text] [Related]  

  • 20. Methylxanthines (caffeine, pentoxifylline and theophylline) decrease the mutagenic effect of daunomycin, doxorubicin and mitoxantrone.
    Piosik J; Gwizdek-Wiśniewska A; Ulanowska K; Ochociński J; Czyz A; Wegrzyn G
    Acta Biochim Pol; 2005; 52(4):923-6. PubMed ID: 16025164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.