These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33260968)

  • 1. Electroosmotic Flow of Non-Newtonian Fluid in Porous Polymer Membrane at High Zeta Potentials.
    Deng S; Zeng Y; Li M; Liang C
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33260968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Parametric Study of Electroosmotically Driven Flow of Power-Law Fluid in a Cylindrical Microcapillary at High Zeta Potential.
    Deng S
    Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials.
    Zhao C; Yang C
    Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Exact Solution for Power-Law Fluids in a Slit Microchannel with Different Zeta Potentials under Electroosmotic Forces.
    Choi DS; Yun S; Choi W
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
    Chen S; He X; Bertola V; Wang M
    J Colloid Interface Sci; 2014 Dec; 436():186-93. PubMed ID: 25278358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous glass electroosmotic pumps: theory.
    Yao S; Santiago JG
    J Colloid Interface Sci; 2003 Dec; 268(1):133-42. PubMed ID: 14611782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroosmotic Mixing of Non-Newtonian Fluid in a Microchannel with Obstacles and Zeta Potential Heterogeneity.
    Mei L; Cui D; Shen J; Dutta D; Brown W; Zhang L; Dabipi IK
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximate Solution for Electroosmotic Flow of Power-Law Fluids in a Planar Microchannel with Asymmetric Electrochemical Boundary Conditions.
    Choi W; Yun S; Choi DS
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic ion transport and fluid flow in a pH-regulated polymer-grafted nanochannel filled with power-law fluid.
    Barman B; Kumar D; Gopmandal PP; Ohshima H
    Soft Matter; 2020 Aug; 16(29):6862-6874. PubMed ID: 32638819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-Scale Modeling of the Effect of Wettability on Two-Phase Flow Properties for Newtonian and Non-Newtonian Fluids.
    Tembely M; Alameri WS; AlSumaiti AM; Jouini MS
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-voltage efficient electroosmotic pumps with ultrathin silica nanoporous membrane.
    Yang Q; Su B; Wang Y; Wu W
    Electrophoresis; 2019 Aug; 40(16-17):2149-2156. PubMed ID: 30916400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroosmotic Flow of Viscoelastic Fluid in a Nanoslit.
    Mei L; Zhang H; Meng H; Qian S
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroosmotic flow in a capillary annulus with high zeta potentials.
    Kang Y; Yang C; Huang X
    J Colloid Interface Sci; 2002 Sep; 253(2):285-94. PubMed ID: 16290861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotating electroosmotic flow of power-law fluid through polyelectrolyte grafted microchannel.
    Patel M; Harish Kruthiventi SS; Kaushik P
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111058. PubMed ID: 32408258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of electroosmotic slip flow of fractional Oldroyd-B fluids at high zeta potentials.
    Wang X; Jiang Y; Qiao Y; Xu H; Qi H
    Electrophoresis; 2020 Jun; 41(10-11):769-777. PubMed ID: 31901144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally Fully Developed Electroosmotic Flow of Power-Law Nanofluid in a Rectangular Microchannel.
    Deng S
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31151264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotic Flow Behavior of Viscoelastic LPTT Fluid in a Microchannel.
    Chen D; Li J; Chen H; Zhang L; Zhang H; Ma Y
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31847473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of electroosmotic flow of power-law fluids in a slit microchannel.
    Zhao C; Zholkovskij E; Masliyah JH; Yang C
    J Colloid Interface Sci; 2008 Oct; 326(2):503-10. PubMed ID: 18656891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: zeta potential and porosity changes near the channel walls.
    Scales N; Tait RN
    J Chem Phys; 2006 Sep; 125(9):094714. PubMed ID: 16965112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous glass electroosmotic pumps: design and experiments.
    Yao S; Hertzog DE; Zeng S; Mikkelsen JC; Santiago JG
    J Colloid Interface Sci; 2003 Dec; 268(1):143-53. PubMed ID: 14611783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.