These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33261064)

  • 1. On the Challenges and Potential of Using Barometric Sensors to Track Human Activity.
    Manivannan A; Chin WCB; Barrat A; Bouffanais R
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33261064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Wearable Apparatus to Measure Fingertip Forces in Manipulation Tasks Based on MEMS Barometric Sensors.
    Cerveri P; Quinzi M; Bovio D; Frigo CA
    IEEE Trans Haptics; 2017; 10(3):317-324. PubMed ID: 28114037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances.
    Zhang S; Li Y; Zhang S; Shahabi F; Xia S; Deng Y; Alshurafa N
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Intelligence Based Approach for Classification of Human Activities Using MEMS Sensors Data.
    Khan YA; Imaduddin S; Singh YP; Wajid M; Usman M; Abbas M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System.
    Serpush F; Menhaj MB; Masoumi B; Karasfi B
    Comput Intell Neurosci; 2022; 2022():1391906. PubMed ID: 35251142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-Pair-Based Floor Localization System Using Barometric Sensors on Smartphones.
    Yi C; Choi W; Jeon Y; Liu L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Spirometry with Integrated Barometric Sensors in Face-Worn Garments.
    Zhou B; Baucells Costa A; Lukowicz P
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Human Activity Recognition Using Wearable Sensors via a Hybrid Feature Selection Method.
    Fan C; Gao F
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
    Brothers MC; DeBrosse M; Grigsby CC; Naik RR; Hussain SM; Heikenfeld J; Kim SS
    Acc Chem Res; 2019 Feb; 52(2):297-306. PubMed ID: 30688433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview.
    Sousa Lima W; Souto E; El-Khatib K; Jalali R; Gama J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
    Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical Workload Tracking Using Human Activity Recognition with Wearable Devices.
    Manjarres J; Narvaez P; Gasser K; Percybrooks W; Pardo M
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent autonomous treatment of bedwetting using non-invasive wearable advanced mechatronics systems and MEMS sensors : Intelligent autonomous bladder monitoring to treat NE.
    Kuru K; Ansell D; Jones M; Watkinson BJ; Caswell N; Leather P; Lancaster A; Sugden P; Briggs E; Davies C; Oh TC; Bennett K; De Goede C
    Med Biol Eng Comput; 2020 May; 58(5):943-965. PubMed ID: 32090271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory.
    Bragança H; Colonna JG; Lima WS; Souto E
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general framework for sensor-based human activity recognition.
    Köping L; Shirahama K; Grzegorzek M
    Comput Biol Med; 2018 Apr; 95():248-260. PubMed ID: 29361267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterial-Enabled Wearable Sensors for Healthcare.
    Yao S; Swetha P; Zhu Y
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29193793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives.
    Al-Qatatsheh A; Morsi Y; Zavabeti A; Zolfagharian A; Salim N; Z Kouzani A; Mosadegh B; Gharaie S
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32796604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location verification algorithm of wearable sensors for wireless body area networks.
    Wang H; Wen Y; Zhao D
    Technol Health Care; 2018; 26(S1):3-18. PubMed ID: 29689752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.