These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33261064)

  • 21. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors.
    Montero Quispe KG; Sousa Lima W; Macêdo Batista D; Souto E
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classifier-Based Data Transmission Reduction in Wearable Sensor Network for Human Activity Monitoring.
    Lewandowski M; Płaczek B; Bernas M
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.
    Herrera-May AL; Soler-Balcazar JC; Vázquez-Leal H; Martínez-Castillo J; Vigueras-Zuñiga MO; Aguilera-Cortés LA
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27563912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential barometric-based positioning technique for indoor elevation measurement in IoT medical applications.
    Wang H; Wen Y; Zhao D
    Technol Health Care; 2017 Jul; 25(S1):295-304. PubMed ID: 28582918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning.
    Chung S; Lim J; Noh KJ; Kim G; Jeong H
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.
    Capela NA; Lemaire ED; Baddour N
    PLoS One; 2015; 10(4):e0124414. PubMed ID: 25885272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review.
    Kamišalić A; Fister I; Turkanović M; Karakatič S
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29799504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
    Kos A; Tomažič S; Umek A
    Sensors (Basel); 2016 Feb; 16(3):301. PubMed ID: 26927125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges and Opportunities of Chemiresistors Based on Microelectromechanical Systems for Chemical Olfaction.
    Guo M; Brewster Ii JT; Zhang H; Zhao Y; Zhao Y
    ACS Nano; 2022 Nov; 16(11):17778-17801. PubMed ID: 36355033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Progress in Flexible Wearable Sensors for Vital Sign Monitoring.
    Liu J; Liu M; Bai Y; Zhang J; Liu H; Zhu W
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32707637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.
    Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H
    J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perceptions and experiences of outdoor occupational workers using digital devices for geospatial biometeorological monitoring.
    Sugg MM; Fuhrmann CM; Runkle JD
    Int J Biometeorol; 2020 Mar; 64(3):471-483. PubMed ID: 31811392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-Term Polygraphic Monitoring through MEMS and Charge Transfer for Low-Power Wearable Applications.
    Manoni A; Gumiero A; Zampogna A; Ciarlo C; Panetta L; Suppa A; Della Torre L; Irrera F
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consumption Analysis of Smartphone based Fall Detection Systems with Multiple External Wireless Sensors.
    González-Cañete FJ; Casilari E
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Passive Sensing of Health Outcomes Through Smartphones: Systematic Review of Current Solutions and Possible Limitations.
    Trifan A; Oliveira M; Oliveira JL
    JMIR Mhealth Uhealth; 2019 Aug; 7(8):e12649. PubMed ID: 31444874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Systematic Approach to the Design and Characterization of A Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis.
    Tahir AM; Chowdhury MEH; Khandakar A; Al-Hamouz S; Abdalla M; Awadallah S; Reaz MBI; Al-Emadi N
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wearable Sensors to Monitor, Enable Feedback, and Measure Outcomes of Activity and Practice.
    Dobkin BH; Martinez C
    Curr Neurol Neurosci Rep; 2018 Oct; 18(12):87. PubMed ID: 30293160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Track My Health: An IoT Approach for Data Acquisition and Activity Recognition.
    Botilias G; Papoutsis A; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():266-271. PubMed ID: 33087625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.