These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33261064)

  • 41. Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities.
    Zhang SH; Wang FX; Li JJ; Peng HD; Yan JH; Pan GB
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29135928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Step by Step Towards Effective Human Activity Recognition: A Balance between Energy Consumption and Latency in Health and Wellbeing Applications.
    Cero Dinarević E; Baraković Husić J; Baraković S
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783705
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies.
    Li G; Wen D
    J Mater Chem B; 2020 Apr; 8(16):3423-3436. PubMed ID: 32022089
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning.
    Xia H; Wang X; Qiao Y; Jian J; Chang Y
    Sensors (Basel); 2015 Mar; 15(4):7857-77. PubMed ID: 25835189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wearable Devices for Ergonomics: A Systematic Literature Review.
    Stefana E; Marciano F; Rossi D; Cocca P; Tomasoni G
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498904
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications.
    Khan S; Ali S; Bermak A
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30862062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of Different Sets of Features for Human Activity Recognition by Wearable Sensors.
    Rosati S; Balestra G; Knaflitz M
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors.
    Ahmad Tarar A; Mohammad U; K Srivastava S
    Biosensors (Basel); 2020 May; 10(6):. PubMed ID: 32481598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Counting Bites With Bits: Expert Workshop Addressing Calorie and Macronutrient Intake Monitoring.
    Alshurafa N; Lin AW; Zhu F; Ghaffari R; Hester J; Delp E; Rogers J; Spring B
    J Med Internet Res; 2019 Dec; 21(12):e14904. PubMed ID: 31799938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys.
    Albéri M; Baldoncini M; Bottardi C; Chiarelli E; Fiorentini G; Raptis KGC; Realini E; Reguzzoni M; Rossi L; Sampietro D; Strati V; Mantovani F
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28813023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hand Gesture Recognition and Finger Angle Estimation via Wrist-Worn Modified Barometric Pressure Sensing.
    Shull PB; Jiang S; Zhu Y; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):724-732. PubMed ID: 30892217
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring.
    Li Q; Zhang LN; Tao XM; Ding X
    Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28547895
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Combination of Indoor Localization and Wearable Sensor-Based Physical Activity Recognition to Assess Older Patients Undergoing Subacute Rehabilitation: Baseline Study Results.
    Ramezani R; Zhang W; Xie Z; Shen J; Elashoff D; Roberts P; Stanton A; Eslami M; Wenger N; Sarrafzadeh M; Naeim A
    JMIR Mhealth Uhealth; 2019 Jul; 7(7):e14090. PubMed ID: 31293244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition.
    Ding R; Li X; Nie L; Li J; Si X; Chu D; Liu G; Zhan D
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flexible Piezoresistive Sensors with Wide-Range Pressure Measurements Based on a Graded Nest-like Architecture.
    Guan X; Wang Z; Zhao W; Huang H; Wang S; Zhang Q; Zhong D; Lin W; Ding N; Peng Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26137-26144. PubMed ID: 32423195
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring.
    Hughes J; Iida F
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413011
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.
    Trung TQ; Lee NE
    Adv Mater; 2016 Jun; 28(22):4338-72. PubMed ID: 26840387
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Machine Learning Approach for Human Activity Recognition.
    Papoutsis A; Botilias G; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():155-160. PubMed ID: 33087606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.