BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33261069)

  • 1. Proteomic and Transcriptomic Analysis Identify Spliceosome as a Significant Component of the Molecular Machinery in the Pituitary Tumors Derived from
    Taniguchi-Ponciano K; Peña-Martínez E; Silva-Román G; Vela-Patiño S; Guzman-Ortiz AL; Quezada H; Gomez-Apo E; Chavez-Macias L; Mercado-Medrez S; Vargas-Ortega G; Espinosa-de-Los-Monteros AL; Gonzales-Virla B; Ferreira-Hermosillo A; Espinosa-Cardenas E; Ramirez-Renteria C; Sosa E; Lopez-Felix B; Guinto G; Marrero-Rodríguez D; Mercado M
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33261069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative splicing of iodothyronine deiodinases in pituitary adenomas. Regulation by oncoprotein SF2/ASF.
    Piekielko-Witkowska A; Kedzierska H; Poplawski P; Wojcicka A; Rybicka B; Maksymowicz M; Grajkowska W; Matyja E; Mandat T; Bonicki W; Nauman P
    Biochim Biophys Acta; 2013 Jun; 1832(6):763-72. PubMed ID: 23462647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinome, cyclins and cyclin-dependent kinases of pituitary adenomas, a look into the gene expression profile among tumors from different lineages.
    Taniguchi-Ponciano K; Portocarrero-Ortiz LA; Guinto G; Moreno-Jimenez S; Gomez-Apo E; Chavez-Macias L; Peña-Martínez E; Silva-Román G; Vela-Patiño S; Ordoñez-García J; Andonegui-Elguera S; Ferreira-Hermosillo A; Ramirez-Renteria C; Espinosa-Cardenas E; Sosa E; Espinosa-de-Los-Monteros AL; Salame-Khouri L; Perez C; Lopez-Felix B; Vargas-Ortega G; Gonzalez-Virla B; Lisbona-Buzali M; Marrero-Rodríguez D; Mercado M
    BMC Med Genomics; 2022 Mar; 15(1):52. PubMed ID: 35260162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevation of growth hormone-releasing hormone receptor messenger ribonucleic acid expression in growth hormone-secreting pituitary adenoma with Gsalpha protein mutation.
    Sakai N; Kim K; Sanno N; Yoshida D; Teramoto A; Shibasaki T
    Neurol Med Chir (Tokyo); 2008; 48(11):481-7; discussion 487-8. PubMed ID: 19029774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome and methylome analysis reveals three cellular origins of pituitary tumors.
    Taniguchi-Ponciano K; Andonegui-Elguera S; Peña-Martínez E; Silva-Román G; Vela-Patiño S; Gomez-Apo E; Chavez-Macias L; Vargas-Ortega G; Espinosa-de-Los-Monteros L; Gonzalez-Virla B; Perez C; Ferreira-Hermosillo A; Espinosa-Cardenas E; Ramirez-Renteria C; Sosa E; Lopez-Felix B; Guinto G; Marrero-Rodríguez D; Mercado M
    Sci Rep; 2020 Nov; 10(1):19373. PubMed ID: 33168897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated cell invasion is induced by hypoxia in a human pituitary adenoma cell line.
    Yoshida D; Teramoto A
    Cell Adh Migr; 2007; 1(1):43-51. PubMed ID: 19262092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallothionein isoform 3 gene is differentially expressed in corticotropin-producing pituitary adenomas.
    Giorgi RR; Correa-Giannella ML; Casarini AP; Machado MC; Bronstein MD; Cescato VA; Giannella-Neto D
    Neuroendocrinology; 2005; 82(3-4):208-14. PubMed ID: 16601360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and proteomic analysis of spliceosome factors interacting with intron-1 of human papillomavirus type-16.
    Martínez-Salazar M; López-Urrutia E; Arechaga-Ocampo E; Bonilla-Moreno R; Martínez-Castillo M; Díaz-Hernández J; Del Moral-Hernández O; Cedillo-Barrón L; Martines-Juarez V; De Nova-Ocampo M; Valdes J; Berumen J; Villegas-Sepúlveda N
    J Proteomics; 2014 Dec; 111():184-97. PubMed ID: 25108200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and alternative splicing of Pit-1 messenger ribonucleic acid in pituitary adenomas.
    Hamada K; Nishi T; Kuratsu J; Ushio Y
    Neurosurgery; 1996 Feb; 38(2):362-6. PubMed ID: 8869065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features.
    Ibáñez-Costa A; Gahete MD; Rivero-Cortés E; Rincón-Fernández D; Nelson R; Beltrán M; de la Riva A; Japón MA; Venegas-Moreno E; Gálvez MÁ; García-Arnés JA; Soto-Moreno A; Morgan J; Tsomaia N; Culler MD; Dieguez C; Castaño JP; Luque RM
    Sci Rep; 2015 Mar; 5():8714. PubMed ID: 25737012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatostatin receptor subtypes mRNA in TSH-secreting pituitary adenomas: a case showing a dramatic reduction in tumor size during short octreotide treatment.
    Horiguchi K; Yamada M; Umezawa R; Satoh T; Hashimoto K; Tosaka M; Yamada S; Mori M
    Endocr J; 2007 Jun; 54(3):371-8. PubMed ID: 17420609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pituitary tumor transforming gene and insulin-like growth factor 1 receptor expression and immunohistochemical measurement of Ki-67 as potential prognostic markers of pituitary tumors aggressiveness.
    Sánchez-Tejada L; Sánchez-Ortiga R; Moreno-Pérez O; Montañana CF; Niveiro M; Tritos NA; Alfonso AM
    Endocrinol Nutr; 2013; 60(7):358-67. PubMed ID: 23416216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of growth-related factors in human pituitary adenomas. Lowered insulin-like growth factor-I and its receptor mRNA in growth hormone-producing adenomas.
    Otsuka F; Tamiya T; Yamauchi T; Ogura T; Ohmoto T; Makino H
    Regul Pept; 1999 Aug; 83(1):31-8. PubMed ID: 10498342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pit-1 gene expression in human lactotroph and somatotroph pituitary adenomas is correlated to D2 receptor gene expression.
    Pellegrini-Bouiller I; Morange-Ramos I; Barlier A; Gunz G; Figarella-Branger D; Cortet-Rudelli C; Grisoli F; Jaquet P; Enjalbert A
    J Clin Endocrinol Metab; 1996 Sep; 81(9):3390-6. PubMed ID: 8784102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PROP1 overexpression in corticotrophinomas: evidence for the role of PROP1 in the maintenance of cells committed to corticotrophic differentiation.
    Araujo RV; Chang CV; Cescato VA; Fragoso MC; Bronstein MD; Mendonca BB; Arnhold IJ; Carvalho LR
    Clinics (Sao Paulo); 2013 Jun; 68(6):887-91. PubMed ID: 23778486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pit-1 gene expression in human pituitary adenomas.
    Pellegrini-Bouiller I; Morange-Ramos I; Barlier A; Gunz G; Enjalbert A; Jaquet P
    Horm Res; 1997; 47(4-6):251-8. PubMed ID: 9167960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic analysis identifies a tumor subtype mRNA classifier for invasive non-functioning pituitary neuroendocrine tumor diagnostics.
    Bao X; Wang G; Yu S; Sun J; He L; Zhao H; Ma Y; Wang F; Wang X; Wang R; Yu J
    Theranostics; 2021; 11(1):132-146. PubMed ID: 33391466
    [No Abstract]   [Full Text] [Related]  

  • 18. Expression of Pit-1 and related proteins in diverse human pituitary adenomas.
    Hoggard N; Callaghan K; Levy A; Davis JR
    J Mol Endocrinol; 1993 Dec; 11(3):283-90. PubMed ID: 8148036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of cold-inducible RNA-binding protein (CIRP) in pituitary adenoma and its relationships with tumor recurrence.
    Wang M; Zhang H; Heng X; Pang Q; Sun A
    Med Sci Monit; 2015 May; 21():1256-60. PubMed ID: 25934796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative proteomics and transcriptomics identify novel invasive-related biomarkers of non-functioning pituitary adenomas.
    Yu SY; Hong LC; Feng J; Wu YT; Zhang YZ
    Tumour Biol; 2016 Jul; 37(7):8923-30. PubMed ID: 26753958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.