BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33261328)

  • 1. Detecting the maximum likelihood transition path from data of stochastic dynamical systems.
    Dai M; Gao T; Lu Y; Zheng Y; Duan J
    Chaos; 2020 Nov; 30(11):113124. PubMed ID: 33261328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An end-to-end deep learning approach for extracting stochastic dynamical systems with α-stable Lévy noise.
    Fang C; Lu Y; Gao T; Duan J
    Chaos; 2022 Jun; 32(6):063112. PubMed ID: 35778145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting stochastic governing laws by non-local Kramers-Moyal formulae.
    Lu Y; Li Y; Duan J
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210195. PubMed ID: 35719068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kernel-based learning framework for discovering the governing equations of stochastic jump-diffusion processes directly from data.
    Sun W; Feng J; Su J; Guo Q
    Phys Rev E; 2023 Sep; 108(3-2):035306. PubMed ID: 37849188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering transition phenomena from data of stochastic dynamical systems with Lévy noise.
    Lu Y; Duan J
    Chaos; 2020 Sep; 30(9):093110. PubMed ID: 33003930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimal control method to compute the most likely transition path for stochastic dynamical systems with jumps.
    Wei W; Gao T; Chen X; Duan J
    Chaos; 2022 May; 32(5):051102. PubMed ID: 35649976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning framework for computing the most probable paths of stochastic dynamical systems.
    Li Y; Duan J; Liu X
    Phys Rev E; 2021 Jan; 103(1-1):012124. PubMed ID: 33601611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering mean residence time and escape probability from data of stochastic dynamical systems.
    Wu D; Fu M; Duan J
    Chaos; 2019 Sep; 29(9):093122. PubMed ID: 31575120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online Identification of Nonlinear Stochastic Spatiotemporal System With Multiplicative Noise by Robust Optimal Control-Based Kernel Learning Method.
    Ning H; Qing G; Tian T; Jing X
    IEEE Trans Neural Netw Learn Syst; 2019 Feb; 30(2):389-404. PubMed ID: 29994724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landscape framework and global stability for stochastic reaction diffusion and general spatially extended systems with intrinsic fluctuations.
    Wu W; Wang J
    J Phys Chem B; 2013 Oct; 117(42):12908-34. PubMed ID: 23865936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometric and projection effects in Kramers-Moyal analysis.
    Lade SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031137. PubMed ID: 19905092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition to stochastic synchronization in spatially extended systems.
    Baroni L; Livi R; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036226. PubMed ID: 11308760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A data-driven framework for learning hybrid dynamical systems.
    Li Y; Xu S; Duan J; Huang Y; Liu X
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37347643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On representing noise by deterministic excitations for interpreting the stochastic resonance phenomenon.
    Sorokin V; Demidov I
    Philos Trans A Math Phys Eng Sci; 2021 Mar; 379(2192):20200229. PubMed ID: 33455556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying a Dynamical Systems Model and Network Theory to Major Depressive Disorder.
    Kossakowski JJ; Gordijn MCM; Riese H; Waldorp LJ
    Front Psychol; 2019; 10():1762. PubMed ID: 31447730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral methods for parametric sensitivity in stochastic dynamical systems.
    Kim D; Debusschere BJ; Najm HN
    Biophys J; 2007 Jan; 92(2):379-93. PubMed ID: 17085489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Most probable dynamics of stochastic dynamical systems with exponentially light jump fluctuations.
    Li Y; Duan J; Liu X; Zhang Y
    Chaos; 2020 Jun; 30(6):063142. PubMed ID: 32611085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Handy fluctuation-dissipation relation to approach generic noisy systems and chaotic dynamics.
    Baldovin M; Caprini L; Vulpiani A
    Phys Rev E; 2021 Sep; 104(3):L032101. PubMed ID: 34654124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding nonlinear system equations and complex network structures from data: A sparse optimization approach.
    Lai YC
    Chaos; 2021 Aug; 31(8):082101. PubMed ID: 34470223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential landscape of high dimensional nonlinear stochastic dynamics with large noise.
    Tang Y; Yuan R; Wang G; Zhu X; Ao P
    Sci Rep; 2017 Nov; 7(1):15762. PubMed ID: 29150680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.