These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33261346)
1. Loewner driving force of the interface in the 2-dimensional Ising system as a chaotic dynamical system. Shibasaki Y; Saito M Chaos; 2020 Nov; 30(11):113130. PubMed ID: 33261346 [TBL] [Abstract][Full Text] [Related]
2. Conformal invariance and stochastic Loewner evolution processes in two-dimensional Ising spin glasses. Amoruso C; Hartmann AK; Hastings MB; Moore MA Phys Rev Lett; 2006 Dec; 97(26):267202. PubMed ID: 17280459 [TBL] [Abstract][Full Text] [Related]
4. Interface growth in two dimensions: a Loewner-equation approach. Durán MA; Vasconcelos GL Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031601. PubMed ID: 21230080 [TBL] [Abstract][Full Text] [Related]
5. Non-Equilibrium Entropy and Irreversibility in Generalized Stochastic Loewner Evolution from an Information-Theoretic Perspective. Shibasaki Y; Saito M Entropy (Basel); 2021 Aug; 23(9):. PubMed ID: 34573723 [TBL] [Abstract][Full Text] [Related]
6. Approach to Gaussian stochastic behavior for systems driven by deterministic chaotic forces. Hilgers A; Beck C Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5385-93. PubMed ID: 11970408 [TBL] [Abstract][Full Text] [Related]
7. Chaos in kicked ratchets. Zarlenga DG; Larrondo HA; Arizmendi CM; Family F Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032901. PubMed ID: 25871166 [TBL] [Abstract][Full Text] [Related]
8. Improvement and empirical research on chaos control by theory of "chaos + chaos = order". Fulai W Chaos; 2012 Dec; 22(4):043145. PubMed ID: 23278080 [TBL] [Abstract][Full Text] [Related]
9. Time Series Analysis of the Lecca P; Mura I; Re A; Barker GC; Ihekwaba AE Front Microbiol; 2016; 7():1760. PubMed ID: 27872618 [TBL] [Abstract][Full Text] [Related]
11. Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model. Dtchetgnia Djeundam SR; Yamapi R; Kofane TC; Aziz-Alaoui MA Chaos; 2013 Sep; 23(3):033125. PubMed ID: 24089961 [TBL] [Abstract][Full Text] [Related]
12. Discrete scale invariance and stochastic Loewner evolution. Nezhadhaghighi MG; Rajabpour MA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061101. PubMed ID: 21230638 [TBL] [Abstract][Full Text] [Related]
13. Fingering in a channel and tripolar Loewner evolutions. Durán MA; Vasconcelos GL Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051602. PubMed ID: 22181425 [TBL] [Abstract][Full Text] [Related]
14. Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes. de Castro CP; Luković M; Pompanin G; Andrade RFS; Herrmann HJ Sci Rep; 2018 Mar; 8(1):5286. PubMed ID: 29588474 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk. Kennedy T Phys Rev Lett; 2002 Apr; 88(13):130601. PubMed ID: 11955086 [TBL] [Abstract][Full Text] [Related]
17. Quasiconformal deformation of the chordal Loewner driving function and first variation of the Loewner energy. Sung J; Wang Y Math Ann; 2024; 390(3):4789-4812. PubMed ID: 39363932 [TBL] [Abstract][Full Text] [Related]
18. An Efficient, Memory-Saving Approach for the Loewner Framework. Palitta D; Lefteriu S J Sci Comput; 2022; 91(2):31. PubMed ID: 35310540 [TBL] [Abstract][Full Text] [Related]
19. Dynamical properties of a novel one dimensional chaotic map. Kumar A; Alzabut J; Kumari S; Rani M; Chugh R Math Biosci Eng; 2022 Jan; 19(3):2489-2505. PubMed ID: 35240794 [TBL] [Abstract][Full Text] [Related]
20. Approximate dynamical eigenmodes of the Ising model with local spin-exchange moves. Zhong W; Panja D; Barkema GT Phys Rev E; 2019 Jul; 100(1-1):012132. PubMed ID: 31499883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]