These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 33261365)
1. Homoclinic chaos in the Rössler model. Malykh S; Bakhanova Y; Kazakov A; Pusuluri K; Shilnikov A Chaos; 2020 Nov; 30(11):113126. PubMed ID: 33261365 [TBL] [Abstract][Full Text] [Related]
2. Ordered intricacy of Shilnikov saddle-focus homoclinics in symmetric systems. Xing T; Pusuluri K; Shilnikov AL Chaos; 2021 Jul; 31(7):073143. PubMed ID: 34340323 [TBL] [Abstract][Full Text] [Related]
3. Sliding homoclinic bifurcations in a Lorenz-type system: Analytic proofs. Belykh VN; Barabash NV; Belykh IV Chaos; 2021 Apr; 31(4):043117. PubMed ID: 34251222 [TBL] [Abstract][Full Text] [Related]
4. Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens-Bogdanov normal form with Qin BW; Chung KW; Rodríguez-Luis AJ; Belhaq M Chaos; 2018 Sep; 28(9):093107. PubMed ID: 30278647 [TBL] [Abstract][Full Text] [Related]
5. On an origami structure of period-1 motions to homoclinic orbits in the Rössler system. Xing S; Luo ACJ Chaos; 2022 Dec; 32(12):123121. PubMed ID: 36587365 [TBL] [Abstract][Full Text] [Related]
6. On bifurcations of Lorenz attractors in the Lyubimov-Zaks model. Kazakov A Chaos; 2021 Sep; 31(9):093118. PubMed ID: 34598457 [TBL] [Abstract][Full Text] [Related]
7. Chaos via Shilnikov's saddle-node bifurcation in a theory of the electroencephalogram. van Veen L; Liley DT Phys Rev Lett; 2006 Nov; 97(20):208101. PubMed ID: 17155719 [TBL] [Abstract][Full Text] [Related]
8. Entropy charts and bifurcations for Lorenz maps with infinite derivatives. Malkin M; Safonov K Chaos; 2021 Apr; 31(4):043107. PubMed ID: 34251229 [TBL] [Abstract][Full Text] [Related]
9. Bifurcation analysis of complex switching oscillations in a Kerr microring resonator. Bitha RDD; Giraldo A; Broderick NGR; Krauskopf B Phys Rev E; 2023 Dec; 108(6-1):064204. PubMed ID: 38243457 [TBL] [Abstract][Full Text] [Related]
11. Multiple attractors and boundary crises in a tri-trophic food chain. Boer MP; Kooi BW; Kooijman SA Math Biosci; 2001 Feb; 169(2):109-28. PubMed ID: 11166318 [TBL] [Abstract][Full Text] [Related]
12. Ecological consequences of global bifurcations in some food chain models. van Voorn GA; Kooi BW; Boer MP Math Biosci; 2010 Aug; 226(2):120-33. PubMed ID: 20447411 [TBL] [Abstract][Full Text] [Related]
13. Discrete homoclinic orbits in a laser with feedback. Pisarchik AN; Meucci R; Arecchi FT Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8823-5. PubMed ID: 11138193 [TBL] [Abstract][Full Text] [Related]
14. Homoclinic organization in the Hindmarsh-Rose model: A three parameter study. Barrio R; Ibáñez S; Pérez L Chaos; 2020 May; 30(5):053132. PubMed ID: 32491901 [TBL] [Abstract][Full Text] [Related]
15. Border collision bifurcations in a two-dimensional piecewise smooth map from a simple switching circuit. Gardini L; Fournier-Prunaret D; Chargé P Chaos; 2011 Jun; 21(2):023106. PubMed ID: 21721748 [TBL] [Abstract][Full Text] [Related]
16. Numerical proof for chemostat chaos of Shilnikov's type. Deng B; Han M; Hsu SB Chaos; 2017 Mar; 27(3):033106. PubMed ID: 28364739 [TBL] [Abstract][Full Text] [Related]
17. Two-parameter bifurcation study of the regularized long-wave equation. Podvigina O; Zheligovsky V; Rempel EL; Chian AC; Chertovskih R; Muñoz PR Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032906. PubMed ID: 26465539 [TBL] [Abstract][Full Text] [Related]
18. Feedback loops for chaos in activator-inhibitor systems. Sensse A; Eiswirth M J Chem Phys; 2005 Jan; 122(4):44516. PubMed ID: 15740276 [TBL] [Abstract][Full Text] [Related]
19. Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Feudel U; Neiman A; Pei X; Wojtenek W; Braun H; Huber M; Moss F Chaos; 2000 Mar; 10(1):231-239. PubMed ID: 12779378 [TBL] [Abstract][Full Text] [Related]
20. Scenarios of hyperchaos occurrence in 4D Rössler system. Stankevich N; Kazakov A; Gonchenko S Chaos; 2020 Dec; 30(12):123129. PubMed ID: 33380035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]