These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33261412)

  • 41. Benefits of Acoustic Beamforming for Solving the Cocktail Party Problem.
    Kidd G; Mason CR; Best V; Swaminathan J
    Trends Hear; 2015 Jun; 19():. PubMed ID: 26126896
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Head shadow enhancement with low-frequency beamforming improves sound localization and speech perception for simulated bimodal listeners.
    Dieudonné B; Francart T
    Hear Res; 2018 Jun; 363():78-84. PubMed ID: 29555110
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sentence Recognition Prediction for Hearing-impaired Listeners in Stationary and Fluctuation Noise With FADE: Empowering the Attenuation and Distortion Concept by Plomp With a Quantitative Processing Model.
    Kollmeier B; Schädler MR; Warzybok A; Meyer BT; Brand T
    Trends Hear; 2016 Sep; 20():. PubMed ID: 27604782
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Revision, extension, and evaluation of a binaural speech intelligibility model.
    Beutelmann R; Brand T; Kollmeier B
    J Acoust Soc Am; 2010 Apr; 127(4):2479-97. PubMed ID: 20370031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Further validation of a binaural model predicting speech intelligibility against envelope-modulated noises.
    Vicente T; Lavandier M
    Hear Res; 2020 May; 390():107937. PubMed ID: 32192940
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of intensity perturbations on speech intelligibility for normal-hearing and hearing-impaired listeners.
    van Schijndel NH; Houtgast T; Festen JM
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2202-10. PubMed ID: 11386571
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Speech intelligibility benefits of hearing AIDS at various input levels.
    Kuk F; Lau CC; Korhonen P; Crose B
    J Am Acad Audiol; 2015 Mar; 26(3):275-88. PubMed ID: 25751695
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Effect of Interaural Mismatches on Contralateral Unmasking With Single-Sided Vocoders.
    Wess JM; Brungart DS; Bernstein JGW
    Ear Hear; 2017; 38(3):374-386. PubMed ID: 28002083
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of reverberation and noise on speech intelligibility in normal-hearing and aided hearing-impaired listeners.
    Xia J; Xu B; Pentony S; Xu J; Swaminathan J
    J Acoust Soc Am; 2018 Mar; 143(3):1523. PubMed ID: 29604671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A harmonic-cancellation-based model to predict speech intelligibility against a harmonic masker.
    Prud'homme L; Lavandier M; Best V
    J Acoust Soc Am; 2020 Nov; 148(5):3246. PubMed ID: 33261378
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A dynamic binaural harmonic-cancellation model to predict speech intelligibility against a harmonic masker varying in intonation, temporal envelope, and location.
    Prud'homme L; Lavandier M; Best V
    Hear Res; 2022 Dec; 426():108535. PubMed ID: 35654633
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise.
    Papakonstantinou A; Strelcyk O; Dau T
    Hear Res; 2011 Oct; 280(1-2):30-7. PubMed ID: 21354285
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of Energy Equalization on the Intelligibility of Speech in Fluctuating Background Interference for Listeners With Hearing Impairment.
    D'Aquila LA; Desloge JG; Reed CM; Braida LD
    Trends Hear; 2017; 21():2331216517710354. PubMed ID: 28602128
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Speech recognition in fluctuating and continuous maskers: effects of hearing loss and presentation level.
    Summers V; Molis MR
    J Speech Lang Hear Res; 2004 Apr; 47(2):245-56. PubMed ID: 15157127
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Redundant Information Is Sometimes More Beneficial Than Spatial Information to Understand Speech in Noise.
    Dieudonné B; Francart T
    Ear Hear; 2019; 40(3):545-554. PubMed ID: 30299342
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A model that predicts the binaural advantage to speech intelligibility from the mixed target and interferer signals.
    Cosentino S; Marquardt T; McAlpine D; Culling JF; Falk TH
    J Acoust Soc Am; 2014 Feb; 135(2):796-807. PubMed ID: 25234888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.
    de Taillez T; Grimm G; Kollmeier B; Neher T
    Int J Audiol; 2018 Jun; 57(sup3):S81-S91. PubMed ID: 28395561
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Binaural model-based dynamic-range compression.
    Ernst SMA; Kortlang S; Grimm G; Bisitz T; Kollmeier B; Ewert SD
    Int J Audiol; 2018 Jun; 57(sup3):S31-S42. PubMed ID: 29373937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relationship between masking release in fluctuating maskers and speech reception thresholds in stationary noise.
    Christiansen C; Dau T
    J Acoust Soc Am; 2012 Sep; 132(3):1655-66. PubMed ID: 22978894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.