These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33261416)

  • 1. Phonetic variability constrained bottleneck features for joint speaker recognition and physical task stress detection.
    Zhang C; Hansen JHL
    J Acoust Soc Am; 2020 Nov; 148(5):2912. PubMed ID: 33261416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition.
    Lozano-Diez A; Zazo R; Toledano DT; Gonzalez-Rodriguez J
    PLoS One; 2017; 12(8):e0182580. PubMed ID: 28796806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT.
    Toledano DT; Fernández-Gallego MP; Lozano-Diez A
    PLoS One; 2018; 13(10):e0205355. PubMed ID: 30304055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-MONA: A dilated mixed-order non-local attention network for speaker and language recognition.
    Miao X; McLoughlin I; Wang W; Zhang P
    Neural Netw; 2021 Jul; 139():201-211. PubMed ID: 33780726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A probabilistic framework for landmark detection based on phonetic features for automatic speech recognition.
    Juneja A; Espy-Wilson C
    J Acoust Soc Am; 2008 Feb; 123(2):1154-68. PubMed ID: 18247915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factor analysis of auto-associative neural networks with application in speaker verification.
    Garimella S; Hermansky H
    IEEE Trans Neural Netw Learn Syst; 2013 Apr; 24(4):522-8. PubMed ID: 24808374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partially supervised speaker clustering.
    Tang H; Chu SM; Hasegawa-Johnson M; Huang TS
    IEEE Trans Pattern Anal Mach Intell; 2012 May; 34(5):959-71. PubMed ID: 21844626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimum classification error-based weighted support vector machine kernels for speaker verification.
    Suh Y; Kim H
    J Acoust Soc Am; 2013 Apr; 133(4):EL307-13. PubMed ID: 23556696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional Attention for Text-Dependent Speaker Verification.
    Fang X; Gao T; Zou L; Ling Z
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33261046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble learning with speaker embeddings in multiple speech task stimuli for depression detection.
    Liu Z; Yu H; Li G; Chen Q; Ding Z; Feng L; Yao Z; Hu B
    Front Neurosci; 2023; 17():1141621. PubMed ID: 37034153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spoofing Detection in Automatic Speaker Verification Systems Using DNN Classifiers and Dynamic Acoustic Features.
    Yu H; Tan ZH; Ma Z; Martin R; Guo J
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4633-4644. PubMed ID: 29990208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New transformed features generated by deep bottleneck extractor and a GMM-UBM classifier for speaker age and gender classification.
    Mallouh AA; Qawaqneh Z; Barkana BD
    Neural Comput Appl; 2018; 30(8):2581-2593. PubMed ID: 30363735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Feature Selection Algorithm on Speech Emotion Recognition Using Deep Convolutional Neural Network.
    Farooq M; Hussain F; Baloch NK; Raja FR; Yu H; Zikria YB
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep bottleneck features for spoken language identification.
    Jiang B; Song Y; Wei S; Liu JH; McLoughlin IV; Dai LR
    PLoS One; 2014; 9(7):e100795. PubMed ID: 24983963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frame-by-frame language identification in short utterances using deep neural networks.
    Gonzalez-Dominguez J; Lopez-Moreno I; Moreno PJ; Gonzalez-Rodriguez J
    Neural Netw; 2015 Apr; 64():49-58. PubMed ID: 25242129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speaker-dependent multipitch tracking using deep neural networks.
    Liu Y; Wang D
    J Acoust Soc Am; 2017 Feb; 141(2):710. PubMed ID: 28253703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning speaker-specific characteristics with a deep neural architecture.
    Chen K; Salman A
    IEEE Trans Neural Netw; 2011 Nov; 22(11):1744-56. PubMed ID: 21954206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Lombard reflex and its role on human listeners and automatic speech recognizers.
    Junqua JC
    J Acoust Soc Am; 1993 Jan; 93(1):510-24. PubMed ID: 8423266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic hole filling for sparse enrollment data using a cohort universal corpus for speaker recognition.
    Suh JW; Hansen JH
    J Acoust Soc Am; 2012 Feb; 131(2):1515-28. PubMed ID: 22352521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speaker recognition based on deep learning: An overview.
    Bai Z; Zhang XL
    Neural Netw; 2021 Aug; 140():65-99. PubMed ID: 33744714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.