These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33261417)

  • 1. Woodwind instrument design optimization based on impedance characteristics with geometric constraints.
    Ernoult A; Vergez C; Missoum S; Guillemain P; Jousserand M
    J Acoust Soc Am; 2020 Nov; 148(5):2864. PubMed ID: 33261417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the consistency of woodwind instrument manufacturing by comparing five nominally identical oboes.
    Mamou-Mani A; Brian Sharp D; Meurisse T; Ring W
    J Acoust Soc Am; 2012 Jan; 131(1):728-36. PubMed ID: 22280695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode locking effects on the playing frequency for fork fingerings on the clarinet.
    Nederveen CJ; Dalmont JP
    J Acoust Soc Am; 2012 Jan; 131(1):689-97. PubMed ID: 22280690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pitch bending and glissandi on the clarinet: roles of the vocal tract and partial tone hole closure.
    Chen JM; Smith J; Wolfe J
    J Acoust Soc Am; 2009 Sep; 126(3):1511-20. PubMed ID: 19739764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound simulation-based design optimization of brass wind instruments.
    Tournemenne R; Petiot JF; Talgorn B; Gilbert J; Kokkolaras M
    J Acoust Soc Am; 2019 Jun; 145(6):3795. PubMed ID: 31255147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the cutoff frequency on the sound production of a clarinet-like instrument.
    Petersen E; Guillemain P; Kergomard J; Colinot T
    J Acoust Soc Am; 2019 Jun; 145(6):3784. PubMed ID: 31255117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete-time modeling of woodwind instrument bores using wave variables.
    van Walstijn M; Campbell M
    J Acoust Soc Am; 2003 Jan; 113(1):575-85. PubMed ID: 12558293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid scheme for bore design optimization of a brass instrument.
    Noreland JO; Udawalpola MR; Berggren OM
    J Acoust Soc Am; 2010 Sep; 128(3):1391-400. PubMed ID: 20815473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of open woodwind toneholes by the tube reversed method.
    Garcia Mayén H; Kergomard J; Vergez C; Guillemain P; Jousserand M; Pachebat M; Sanchez P
    J Acoust Soc Am; 2021 Nov; 150(5):3763. PubMed ID: 34852613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the player's vocal tract on woodwind instrument tone.
    Backus J
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 1):17-20. PubMed ID: 4019905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic dissipation in wooden pipes of different species used in wind instrument making: An experimental study.
    Boutin H; Le Conte S; Vaiedelich S; Fabre B; Le Carrou JL
    J Acoust Soc Am; 2017 Apr; 141(4):2840. PubMed ID: 28464673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal tract resonances and the sound of the Australian didjeridu (yidaki). III. Determinants of playing quality.
    Smith J; Rey G; Dickens P; Fletcher N; Hollenberg L; Wolfe J
    J Acoust Soc Am; 2007 Jan; 121(1):547-58. PubMed ID: 17297808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bassoon tonehole lattice: Links between the open and closed holes and the radiated sound spectrum.
    Petersen EA; Colinot T; Silva F; H-Turcotte V
    J Acoust Soc Am; 2021 Jul; 150(1):398. PubMed ID: 34340486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chimney tube in musical acoustics: A textbook-level formulation for students and musicians.
    Saenger KL
    J Acoust Soc Am; 2022 Jul; 152(1):540. PubMed ID: 35931525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trombone bore optimization based on input impedance targets.
    Braden AC; Newton MJ; Campbell DM
    J Acoust Soc Am; 2009 Apr; 125(4):2404-12. PubMed ID: 19354414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear-acoustic effects of asymmetrical undercutting of toneholes of woodwind instruments.
    Gerasimov R
    J Acoust Soc Am; 2024 Oct; 156(4):2644-2655. PubMed ID: 39417656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of woodwind instrument toneholes with the finite element method.
    Lefebvre A; Scavone GP
    J Acoust Soc Am; 2012 Apr; 131(4):3153-63. PubMed ID: 22501087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dual influence of the reed resonance frequency and tonehole lattice cutoff frequency on sound production and radiation of a clarinet-like instrument.
    Petersen EA; Guillemain P; Jousserand M
    J Acoust Soc Am; 2022 Jun; 151(6):3780. PubMed ID: 35778204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transfer matrix for the input impedance of weakly tapered, dissipative cones as of wind instruments (L).
    Grothe T; Baumgart J; Nederveen CJ
    J Acoust Soc Am; 2023 Jul; 154(1):463-466. PubMed ID: 37489912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'Warming up' a wind instrument: The time-dependent effects of exhaled air on the resonances of a trombone.
    Boutin H; Smith J; Wolfe J
    J Acoust Soc Am; 2020 Oct; 148(4):1817. PubMed ID: 33138478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.