These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33261472)

  • 41. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution.
    Zhang F; Allen AJ; Levine LE; Tsai DH; Ilavsky J
    Langmuir; 2017 Mar; 33(11):2817-2828. PubMed ID: 28233496
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of collective diffusion coefficient of bovine serum albumin in aqueous electrolyte solution with hard-core two-Yukawa potential.
    Yu YX; Tian AW; Gao GH
    Phys Chem Chem Phys; 2005 Jun; 7(12):2423-8. PubMed ID: 15962025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamics of suspensions of hydrodynamically structured particles: analytic theory and applications to experiments.
    Riest J; Eckert T; Richtering W; Nägele G
    Soft Matter; 2015 Apr; 11(14):2821-43. PubMed ID: 25707362
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Membrane separation of protein precipitates: Studies with cross flow in hollow fibers.
    Devereux N; Hoare M
    Biotechnol Bioeng; 1986 Mar; 28(3):422-31. PubMed ID: 18555344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioartificial kidney. I. Theoretical analysis of convective flow in hollow fiber modules: application to a bioartificial hemofilter.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):142-52. PubMed ID: 10712730
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic model of osmosis through semipermeable and solute-permeable membranes.
    Kiil F
    Acta Physiol Scand; 2003 Feb; 177(2):107-17. PubMed ID: 12558549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inorganic particles increase biofilm heterogeneity and enhance permeate flux.
    Chomiak A; Sinnet B; Derlon N; Morgenroth E
    Water Res; 2014 Nov; 64():177-186. PubMed ID: 25058736
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Concentration polarization phenomenon during the nanofiltration of multi-ionic solutions: influence of the filtrated solution and operating conditions.
    Déon S; Dutournié P; Fievet P; Limousy L; Bourseau P
    Water Res; 2013 May; 47(7):2260-72. PubMed ID: 23434044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrodynamic force on a microparticle approaching a wall in a nanoparticle dispersion: observation of a separation-dependent effective viscosity.
    James GK; Walz JY
    Langmuir; 2012 Jan; 28(1):92-103. PubMed ID: 22066789
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation.
    Nicoud L; Lattuada M; Lazzari S; Morbidelli M
    Phys Chem Chem Phys; 2015 Oct; 17(37):24392-402. PubMed ID: 26339696
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes.
    Pohl P; Saparov SM; Antonenko YN
    Biophys J; 1997 Apr; 72(4):1711-8. PubMed ID: 9083675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Particle transport modeling in pulmonary airways with high-order elements.
    Wininger CW; Heys JJ
    Math Biosci; 2011 Jul; 232(1):11-9. PubMed ID: 21439981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbohydrate and mineral removal during the production of low-phytate soy protein isolate by combined electroacidification and high shear tangential flow ultrafiltration.
    Skorepova J; Moresoli C
    J Agric Food Chem; 2007 Jul; 55(14):5645-52. PubMed ID: 17567146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dielectrophoretic levitation in the presence of shear flow: implications for colloidal fouling of filtration membranes.
    Molla S; Bhattacharjee S
    Langmuir; 2007 Oct; 23(21):10618-27. PubMed ID: 17867710
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effective medium approximation and deposition of colloidal particles in fibrous and granular media.
    Li Y; Park CW
    Adv Colloid Interface Sci; 2000 Sep; 87(1):1-74. PubMed ID: 11032315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simple Theoretical Results on Reversible Fouling in Cross-Flow Membrane Filtration.
    Haldenwang P; Bernales B; Guichardon P; Ibaseta N
    Membranes (Basel); 2019 Apr; 9(4):. PubMed ID: 30987233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water hammer reduces fouling during natural water ultrafiltration.
    Broens F; Menne D; Pothof I; Blankert B; Roesink HD; Futselaar H; Lammertink RG; Wessling M
    Water Res; 2012 Mar; 46(4):1113-20. PubMed ID: 22227242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anisotropic diffusion in confined colloidal dispersions: the evanescent diffusivity.
    Swan JW; Brady JF
    J Chem Phys; 2011 Jul; 135(1):014701. PubMed ID: 21744908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.