These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33261478)

  • 1. Spectroscopic near-infrared photodetectors enabled by strong light-matter coupling in (6,5) single-walled carbon nanotubes.
    Mischok A; Lüttgens J; Berger F; Hillebrandt S; Tenopala-Carmona F; Kwon S; Murawski C; Siegmund B; Zaumseil J; Gather MC
    J Chem Phys; 2020 Nov; 153(20):201104. PubMed ID: 33261478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities.
    Graf A; Tropf L; Zakharko Y; Zaumseil J; Gather MC
    Nat Commun; 2016 Oct; 7():13078. PubMed ID: 27721454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities.
    Graf A; Held M; Zakharko Y; Tropf L; Gather MC; Zaumseil J
    Nat Mater; 2017 Sep; 16(9):911-917. PubMed ID: 28714985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population of Exciton-Polaritons
    Lüttgens JM; Berger FJ; Zaumseil J
    ACS Photonics; 2021 Jan; 8(1):182-193. PubMed ID: 33506074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a Polariton-Mediated Biexciton Transition in Single-Walled Carbon Nanotubes.
    Lüttgens JM; Kuang Z; Zorn NF; Buckup T; Zaumseil J
    ACS Photonics; 2022 May; 9(5):1567-1576. PubMed ID: 35607642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Thin-Film Red-Light Photodiodes with Tunable Spectral Response Via Selective Exciton Activation.
    Xing S; Wang X; Guo E; Kleemann H; Leo K
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13061-13067. PubMed ID: 32088954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluence-dependent singlet exciton dynamics in length-sorted chirality-enriched single-walled carbon nanotubes.
    Park J; Deria P; Olivier JH; Therien MJ
    Nano Lett; 2014 Feb; 14(2):504-11. PubMed ID: 24329134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surpassing the Exciton Diffusion Limit in Single-Walled Carbon Nanotube Sensitized Solar Cells.
    Koleilat GI; Vosgueritchian M; Lei T; Zhou Y; Lin DW; Lissel F; Lin P; To JW; Xie T; England K; Zhang Y; Bao Z
    ACS Nano; 2016 Dec; 10(12):11258-11265. PubMed ID: 28024326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single microwire near-infrared exciton-polariton light-emitting diode.
    Jiang M; Tang K; Wan P; Xu T; Xu H; Kan C
    Nanoscale; 2021 Jan; 13(3):1663-1672. PubMed ID: 33432956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polariton-assisted excitation energy channeling in organic heterojunctions.
    Wang M; Hertzog M; Börjesson K
    Nat Commun; 2021 Mar; 12(1):1874. PubMed ID: 33767204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals.
    Zakharko Y; Graf A; Schießl SP; Hähnlein B; Pezoldt J; Gather MC; Zaumseil J
    Nano Lett; 2016 May; 16(5):3278-84. PubMed ID: 27105249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanophotonics with 2D transition metal dichalcogenides [Invited].
    Krasnok A; Lepeshov S; Alú A
    Opt Express; 2018 Jun; 26(12):15972-15994. PubMed ID: 30114850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.
    Dowgiallo AM; Mistry KS; Johnson JC; Reid OG; Blackburn JL
    J Phys Chem Lett; 2016 May; 7(10):1794-9. PubMed ID: 27127916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy.
    Son M; Armstrong ZT; Allen RT; Dhavamani A; Arnold MS; Zanni MT
    Nat Commun; 2022 Nov; 13(1):7305. PubMed ID: 36435875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-Dependent Control of Exciton-Polariton Interactions in WS
    Sinha SS; Zak A; Rosentsveig R; Pinkas I; Tenne R; Yadgarov L
    Small; 2020 Jan; 16(4):e1904390. PubMed ID: 31833214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging.
    Diao S; Hong G; Robinson JT; Jiao L; Antaris AL; Wu JZ; Choi CL; Dai H
    J Am Chem Soc; 2012 Oct; 134(41):16971-4. PubMed ID: 23033937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Narrow-linewidth carbon nanotube emission in silicon hollow-core photonic crystal cavity.
    Hoang THC; Durán-Valdeiglesias E; Alonso-Ramos C; Serna S; Zhang W; Balestrieri M; Keita AS; Caselli N; Biccari F; Le Roux X; Filoramo A; Gurioli M; Vivien L; Cassan E
    Opt Lett; 2017 Jun; 42(11):2228-2231. PubMed ID: 28569888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polariton-assisted manipulation of energy relaxation pathways: donor-acceptor role reversal in a tuneable microcavity.
    Dovzhenko D; Lednev M; Mochalov K; Vaskan I; Rakovich Y; Karaulov A; Nabiev I
    Chem Sci; 2021 Oct; 12(38):12794-12805. PubMed ID: 34703566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.