These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33261494)

  • 1. A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes.
    Yan Y; Xing T; Shi Q
    J Chem Phys; 2020 Nov; 153(20):204109. PubMed ID: 33261494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-temperature quantum Fokker-Planck equation that improves the numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density.
    Li T; Yan Y; Shi Q
    J Chem Phys; 2022 Feb; 156(6):064107. PubMed ID: 35168335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes.
    Liu H; Zhu L; Bai S; Shi Q
    J Chem Phys; 2014 Apr; 140(13):134106. PubMed ID: 24712779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient propagation of the hierarchical equations of motion using the matrix product state method.
    Shi Q; Xu Y; Yan Y; Xu M
    J Chem Phys; 2018 May; 148(17):174102. PubMed ID: 29739219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum rate dynamics for proton transfer reactions in condensed phase: the exact hierarchical equations of motion approach.
    Chen L; Shi Q
    J Chem Phys; 2009 Apr; 130(13):134505. PubMed ID: 19355749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Equations of Motion for Quantum Chemical Dynamics: Recent Methodology Developments and Applications.
    Bai S; Zhang S; Huang C; Shi Q
    Acc Chem Res; 2024 Oct; ():. PubMed ID: 39381954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of correlated initial state in the hierarchical equations of motion method using an imaginary time path integral approach.
    Song L; Shi Q
    J Chem Phys; 2015 Nov; 143(19):194106. PubMed ID: 26590526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors.
    Yan Y; Xu M; Li T; Shi Q
    J Chem Phys; 2021 May; 154(19):194104. PubMed ID: 34240893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tree tensor network state approach for solving hierarchical equations of motion.
    Ke Y
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37259990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicit system-bath correlation calculated using the hierarchical equations of motion method.
    Zhu L; Liu H; Xie W; Shi Q
    J Chem Phys; 2012 Nov; 137(19):194106. PubMed ID: 23181293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidimensional quantum trajectories: applications of the derivative propagation method.
    Trahan CJ; Wyatt RE; Poirier B
    J Chem Phys; 2005 Apr; 122(16):164104. PubMed ID: 15945669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers.
    Chen L; Zheng R; Shi Q; Yan Y
    J Chem Phys; 2010 Jan; 132(2):024505. PubMed ID: 20095685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical equations of motion method based on Fano spectrum decomposition for low temperature environments.
    Zhang HD; Cui L; Gong H; Xu RX; Zheng X; Yan Y
    J Chem Phys; 2020 Feb; 152(6):064107. PubMed ID: 32061227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective bath coordinate mapping of "hierarchy" in hierarchical equations of motion.
    Ikeda T; Nakayama A
    J Chem Phys; 2022 Mar; 156(10):104104. PubMed ID: 35291776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM).
    Tanimura Y
    J Chem Phys; 2020 Jul; 153(2):020901. PubMed ID: 32668942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Problem-free time-dependent variational principle for open quantum systems.
    Joubert-Doriol L; Izmaylov AF
    J Chem Phys; 2015 Apr; 142(13):134107. PubMed ID: 25854228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous integration of mixed quantum-classical systems by density matrix evolution equations using interaction representation and adaptive time step integrator.
    Lensink MF; Mavri J; Berendsen HJ
    J Comput Chem; 1996 Aug; 17(11):1287-95. PubMed ID: 25400147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical distributions of the tuning and coupling collective modes at a conical intersection using the hierarchical equations of motion.
    Mangaud E; Lasorne B; Atabek O; Desouter-Lecomte M
    J Chem Phys; 2019 Dec; 151(24):244102. PubMed ID: 31893912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton transfer using rates extracted from the "hierarchical equations of motion".
    Seibt J; Kühn O
    J Chem Phys; 2020 Nov; 153(19):194112. PubMed ID: 33218227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach.
    Zhang HD; Yan Y
    J Phys Chem A; 2016 May; 120(19):3241-5. PubMed ID: 26757138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.