BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33261507)

  • 1. Simulation-Based Percutaneous Renal Access Training: Evaluating a Novel 3D Immersive Virtual Reality Platform.
    Farcas M; Reynolds LF; Lee JY
    J Endourol; 2021 May; 35(5):695-699. PubMed ID: 33261507
    [No Abstract]   [Full Text] [Related]  

  • 2. Evaluation of a Virtual Reality Percutaneous Nephrolithotomy (PCNL) Surgical Simulator.
    Sainsbury B; Łącki M; Shahait M; Goldenberg M; Baghdadi A; Cavuoto L; Ren J; Green M; Lee J; Averch TD; Rossa C
    Front Robot AI; 2019; 6():145. PubMed ID: 33501160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a Full-Immersion Simulation Platform for Percutaneous Nephrolithotomy Using Three-Dimensional Printing Technology.
    Ghazi A; Campbell T; Melnyk R; Feng C; Andrusco A; Stone J; Erturk E
    J Endourol; 2017 Dec; 31(12):1314-1320. PubMed ID: 29048214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensionally printed non-biological simulator for percutaneous nephrolithotomy training.
    Ali S; Sirota E; Ali H; Bezrukov E; Okhunov Z; Bukatov M; Letunovskiy A; Grygoriev N; Taratkin M; Vovdenko S; Afyouni A; Alyaev Y
    Scand J Urol; 2020 Aug; 54(4):349-354. PubMed ID: 32496922
    [No Abstract]   [Full Text] [Related]  

  • 5. Simulation for Percutaneous Renal Access: Where Are We?
    Noureldin YA; Andonian S
    J Endourol; 2017 Apr; 31(S1):S10-S19. PubMed ID: 27617641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot Assessment of Immersive Virtual Reality Renal Models as an Educational and Preoperative Planning Tool for Percutaneous Nephrolithotomy.
    Parkhomenko E; O'Leary M; Safiullah S; Walia S; Owyong M; Lin C; James R; Okhunov Z; Patel RM; Kaler KS; Landman J; Clayman R
    J Endourol; 2019 Apr; 33(4):283-288. PubMed ID: 30460860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training for percutaneous renal access on a virtual reality simulator.
    Zhang Y; Yu CF; Liu JS; Wang G; Zhu H; Na YQ
    Chin Med J (Engl); 2013; 126(8):1528-31. PubMed ID: 23595389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a Low-Cost Portable 3D Virtual Reality Gesture-Mediated Simulator for Training and Learning Basic Psychomotor Skills in Minimally Invasive Surgery: Development and Content Validity Study.
    Alvarez-Lopez F; Maina MF; Saigí-Rubió F
    J Med Internet Res; 2020 Jul; 22(7):e17491. PubMed ID: 32673217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is there a place for virtual reality simulators in assessment of competency in percutaneous renal access?
    Noureldin YA; Fahmy N; Anidjar M; Andonian S
    World J Urol; 2016 May; 34(5):733-9. PubMed ID: 26242727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of the fluoroless C-Arm Trainer at the American Urological Association hands on training percutaneous renal access.
    Noureldin YA; Hoenig DM; Zhao P; Elsamra SE; Stern J; Gaunay G; Motamedinia P; Okeke Z; Rastinehad AR; Sweet RM
    World J Urol; 2018 Jul; 36(7):1149-1155. PubMed ID: 29455253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training the resident in percutaneous nephrolithotomy.
    Ather MH; Ng CF; Pourmand G; Osther PJ
    Arab J Urol; 2014 Mar; 12(1):49-53. PubMed ID: 26019923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial.
    Frederiksen JG; Sørensen SMD; Konge L; Svendsen MBS; Nobel-Jørgensen M; Bjerrum F; Andersen SAW
    Surg Endosc; 2020 Mar; 34(3):1244-1252. PubMed ID: 31172325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.
    Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P
    J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training in percutaneous nephrolithotomy--a critical review.
    de la Rosette JJ; Laguna MP; Rassweiler JJ; Conort P
    Eur Urol; 2008 Nov; 54(5):994-1001. PubMed ID: 18394783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel biological model for training in percutaneous renal access.
    Vijayakumar M; Balaji S; Singh A; Ganpule A; Sabnis R; Desai M
    Arab J Urol; 2019; 17(4):292-297. PubMed ID: 31723446
    [No Abstract]   [Full Text] [Related]  

  • 17. Correlation of Virtual Reality Simulation and Dry Lab Robotic Technical Skills.
    Newcomb LK; Bradley MS; Truong T; Tang M; Comstock B; Li YJ; Visco AG; Siddiqui NY
    J Minim Invasive Gynecol; 2018; 25(4):689-696. PubMed ID: 29154932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual reality ureteroscopy simulator as a valid tool for assessing endourological skills.
    Matsumoto ED; Pace KT; D'A Honey RJ
    Int J Urol; 2006 Jul; 13(7):896-901. PubMed ID: 16882051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Validation of a Novel Robotic Procedure Specific Simulation Platform: Partial Nephrectomy.
    Hung AJ; Shah SH; Dalag L; Shin D; Gill IS
    J Urol; 2015 Aug; 194(2):520-6. PubMed ID: 25801765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of 3D stereopsis and hand-tool alignment on learning effectiveness and skill transfer of a VR-based simulator for dental training.
    Kaluschke M; Yin MS; Haddawy P; Suebnukarn S; Zachmann G
    PLoS One; 2023; 18(10):e0291389. PubMed ID: 37792776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.