These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 33261665)
1. Implications of increasing temperature stress for predatory biocontrol of vector mosquitoes. Buxton M; Nyamukondiwa C; Dalu T; Cuthbert RN; Wasserman RJ Parasit Vectors; 2020 Dec; 13(1):604. PubMed ID: 33261665 [TBL] [Abstract][Full Text] [Related]
2. Efficacy of native cyclopoid copepods in biological vector control with regard to their predatory behavior against the Asian tiger mosquito, Aedes albopictus. Pauly I; Jakoby O; Becker N Parasit Vectors; 2022 Oct; 15(1):351. PubMed ID: 36183110 [TBL] [Abstract][Full Text] [Related]
3. Predator density modifies mosquito regulation in increasingly complex environments. Buxton M; Cuthbert RN; Dalu T; Nyamukondiwa C; Wasserman RJ Pest Manag Sci; 2020 Jun; 76(6):2079-2086. PubMed ID: 31943746 [TBL] [Abstract][Full Text] [Related]
4. Prey choice by a freshwater copepod on larval Emerson LC; Holmes CJ; Cáceres CE J Vector Ecol; 2021 Dec; 46(2):200-206. PubMed ID: 35230024 [TBL] [Abstract][Full Text] [Related]
5. Predator selection and predator-prey interactions for the biological control of mosquito dengue vectors in northern Vietnam. Van Duong C; Phuong Tran UT; Van Nguyen V; Bae YJ J Vector Ecol; 2021 Dec; 46(2):163-172. PubMed ID: 35230021 [TBL] [Abstract][Full Text] [Related]
6. Inter-Population Similarities and Differences in Predation Efficiency of a Mosquito Natural Enemy. Cuthbert RN; Dalu T; Wasserman RJ; Weyl OLF; Froneman PW; Callaghan A; Dick JTA J Med Entomol; 2020 Nov; 57(6):1983-1987. PubMed ID: 32459349 [TBL] [Abstract][Full Text] [Related]
7. Water depth-dependent notonectid predatory impacts across larval mosquito ontogeny. Dalal A; Cuthbert RN; Dick JT; Gupta S Pest Manag Sci; 2019 Oct; 75(10):2610-2617. PubMed ID: 30729643 [TBL] [Abstract][Full Text] [Related]
8. Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. Russell MC; Herzog CM; Gajewski Z; Ramsay C; El Moustaid F; Evans MV; Desai T; Gottdenker NL; Hermann SL; Power AG; McCall AC Elife; 2022 Jan; 11():. PubMed ID: 35044908 [TBL] [Abstract][Full Text] [Related]
9. Evaluating the carnivorous efficacy of Utricularia aurea (Lamiales: Lentibulariaceae) on the larval stages of Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti (Diptera: Culicidae). Mohanty AK; Govekar A; de Souza C; Mohapatra A; Janarthanam MK; Vukanti R; Montemarano JJ; Balabaskaran Nina P J Med Entomol; 2024 May; 61(3):719-725. PubMed ID: 38521610 [TBL] [Abstract][Full Text] [Related]
10. Prey preferences of notonectids towards larval mosquitoes across prey ontogeny and search area. Dalal A; Cuthbert RN; Dick JT; Gupta S Pest Manag Sci; 2020 Feb; 76(2):609-616. PubMed ID: 31313450 [TBL] [Abstract][Full Text] [Related]
11. Prey-predator relationship between the cyclopoids Mesocyclops longisetus and Mesocyclops meridianus with Anopheles aquasalis larvae. Pernía J; de Zoppi RE; Palacios-Cáceres M J Am Mosq Control Assoc; 2007 Jun; 23(2):166-71. PubMed ID: 17847849 [TBL] [Abstract][Full Text] [Related]
12. The prey consumption and prey preference of the larvae of the mosquito Culex (Lutzia) raptor on the larvae of Culex quinquefasciatus. Thangam TS; Kathiresan K Experientia; 1996 Apr; 52(4):380-2. PubMed ID: 8620943 [TBL] [Abstract][Full Text] [Related]
13. Predators like it hot: Thermal mismatch in a predator-prey system across an elevational tropical gradient. Pintanel P; Tejedo M; Salinas-Ivanenko S; Jervis P; Merino-Viteri A J Anim Ecol; 2021 Aug; 90(8):1985-1995. PubMed ID: 33942306 [TBL] [Abstract][Full Text] [Related]
14. Calanoid Copepods: An Overlooked Tool in the Control of Disease Vector Mosquitoes. Cuthbert RN; Dalu T; Wasserman RJ; Callaghan A; Weyl OLF; Dick JTA J Med Entomol; 2018 Oct; 55(6):1656-1658. PubMed ID: 30085266 [TBL] [Abstract][Full Text] [Related]
15. Efficacy of indigenous larvivorous fishes against Culex quinquefasciatus in the presence of alternative prey: implications for biological control. Aditya G; Pal S; Saha N; Saha G J Vector Borne Dis; 2012 Dec; 49(4):217-25. PubMed ID: 23428520 [TBL] [Abstract][Full Text] [Related]
16. Risky behaviors: effects of Toxorhynchites splendens (Diptera: Culicidae) predator on the behavior of three mosquito species. Zuharah WF; Fadzly N; Yusof NA; Dieng H J Insect Sci; 2015; 15(1):. PubMed ID: 26386041 [TBL] [Abstract][Full Text] [Related]
17. Prey and size preference of Mesocyclops longisetus (Copepoda) for Aedes albopictus and Culex quinquefasciatus larvae. Soumare MK; Cilek JE; Schreibers ET J Am Mosq Control Assoc; 2004 Sep; 20(3):305-10. PubMed ID: 15532932 [TBL] [Abstract][Full Text] [Related]
18. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Patil CD; Patil SV; Salunke BK; Salunkhe RB Parasitol Res; 2012 May; 110(5):1841-7. PubMed ID: 22065062 [TBL] [Abstract][Full Text] [Related]
19. Macrocyclops albidus (Copepoda: cyclopidae) for the Biocontrol of Aedes albopictus and Culex pipiens in Italy. Veronesi R; Carrieri M; Maccagnani B; Maini S; Bellini R J Am Mosq Control Assoc; 2015 Mar; 31(1):32-43. PubMed ID: 25843174 [TBL] [Abstract][Full Text] [Related]