These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 33261739)

  • 1. The MemoFlex II, a non-robotic approach to follow-the-leader motion of a snake-like instrument for surgery using four predetermined physical tracks.
    Henselmans PWJ; Culmone C; Jager DJ; van Starkenburg RIB; Breedveld P
    Med Eng Phys; 2020 Dec; 86():86-95. PubMed ID: 33261739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Follow-the-Leader motion of a hyper-redundant surgical instrument: Proof-of-concept prototype and first tests.
    Henselmans PW; Smit G; Breedveld P
    Proc Inst Mech Eng H; 2019 Nov; 233(11):1141-1150. PubMed ID: 31526098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MemoBox: A mechanical follow-the-leader system for minimally invasive surgery.
    Culmone C; Jager DJ; Breedveld P
    Front Med Technol; 2022; 4():938643. PubMed ID: 36340589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Memo Slide: An explorative study into a novel mechanical follow-the-leader mechanism.
    Henselmans PW; Gottenbos S; Smit G; Breedveld P
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1213-1223. PubMed ID: 29125034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Follow-The-Leader Mechanisms in Medical Devices: A Review on Scientific and Patent Literature.
    Culmone C; Yikilmaz FS; Trauzettel F; Breedveld P
    IEEE Rev Biomed Eng; 2023; 16():439-455. PubMed ID: 34543205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuum Robot With Follow-the-Leader Motion for Endoscopic Third Ventriculostomy and Tumor Biopsy.
    Gao Y; Takagi K; Kato T; Shono N; Hata N
    IEEE Trans Biomed Eng; 2020 Feb; 67(2):379-390. PubMed ID: 31034405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Snake-like surgical forceps for robot-assisted minimally invasive surgery.
    Jin X; Zhao J; Feng M; Hao L; Li Q
    Int J Med Robot; 2018 Aug; 14(4):e1908. PubMed ID: 29570936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic total thyroidectomy with modified radical neck dissection via unilateral retroauricular approach.
    Byeon HK; Holsinger FC; Tufano RP; Chung HJ; Kim WS; Koh YW; Choi EC
    Ann Surg Oncol; 2014 Nov; 21(12):3872-5. PubMed ID: 25227305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic natural orifice transluminal endoscopic surgery (R-NOTES): literature review and prototype system.
    Azizi Koutenaei B; Wilson E; Monfaredi R; Peters C; Kronreif G; Cleary K
    Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):18-23. PubMed ID: 25539996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steerable Surgical Instrument for Conventional and Single-Site Minimally Invasive Surgery.
    Hernández-Valderrama VG; Ordorica-Flores RM; Montoya-Alvarez S; Haro-Mendoza D; Ochoa-Toledo L; Lorias-Espinoza D; Ortiz-Simón JL; Pérez-Escamirosa F
    Surg Innov; 2022 Jun; 29(3):449-458. PubMed ID: 34358428
    [No Abstract]   [Full Text] [Related]  

  • 11. Towards autonomous motion control in minimally invasive robotic surgery.
    Prendergast JM; Rentschler ME
    Expert Rev Med Devices; 2016 Aug; 13(8):741-8. PubMed ID: 27376789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring non-assembly 3D printing for novel compliant surgical devices.
    Culmone C; Henselmans PWJ; van Starkenburg RIB; Breedveld P
    PLoS One; 2020; 15(5):e0232952. PubMed ID: 32407397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The i
    Berthet-Rayne P; Gras G; Leibrandt K; Wisanuvej P; Schmitz A; Seneci CA; Yang GZ
    Ann Biomed Eng; 2018 Oct; 46(10):1663-1675. PubMed ID: 29948372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural orifice transluminal endoscopic surgery with a snake-mechanism using a movable pulley.
    Lee H; Kim KG; Seo JH; Sohn DK
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28271600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Articulated minimally invasive surgical instrument based on compliant mechanism.
    Arata J; Kogiso S; Sakaguchi M; Nakadate R; Oguri S; Uemura M; Byunghyun C; Akahoshi T; Ikeda T; Hashizume M
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1837-43. PubMed ID: 25698401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, development and characterization of a modular end effector for MIS procedures.
    Izzo A; Tortora G; Dario P; Menciassi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6880-3. PubMed ID: 26737874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training.
    Tzemanaki A; Walters P; Pipe AG; Melhuish C; Dogramadzi S
    Int J Med Robot; 2014 Sep; 10(3):368-78. PubMed ID: 24127331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A minimally invasive robotic surgery approach to perform totally endoscopic coronary artery bypass on beating hearts.
    Alamdar A; Hanife S; Farahmand F; Behzadipour S; Mirbagheri A
    Med Hypotheses; 2019 Mar; 124():76-83. PubMed ID: 30798923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery.
    Du X; Allan M; Dore A; Ourselin S; Hawkes D; Kelly JD; Stoyanov D
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1109-19. PubMed ID: 27038963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct target NOTES: prospective applications for next generation robotic platforms.
    Atallah S; Hodges A; Larach SW
    Tech Coloproctol; 2018 May; 22(5):363-371. PubMed ID: 29855814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.