These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33261945)

  • 1. Automatic measurement of pressure ulcers using Support Vector Machines and GrabCut.
    Silva RHLE; Machado AMC
    Comput Methods Programs Biomed; 2021 Mar; 200():105867. PubMed ID: 33261945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational method for semi-automatic measurement of pressure ulcers.
    Silva RH; Machado AMC
    Wound Repair Regen; 2018 Jul; 26(4):332-339. PubMed ID: 30099813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning approach based on superpixel segmentation assisted labeling for automatic pressure ulcer diagnosis.
    Chang CW; Christian M; Chang DH; Lai F; Liu TJ; Chen YS; Chen WJ
    PLoS One; 2022; 17(2):e0264139. PubMed ID: 35176101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary tissue classification on wound images with neural networks and bayesian classifiers.
    Veredas F; Mesa H; Morente L
    IEEE Trans Med Imaging; 2010 Feb; 29(2):410-27. PubMed ID: 19825516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Area Determination of Diabetic Foot Ulcer Images Using a Cascaded Two-Stage SVM-Based Classification.
    Wang L; Pedersen PC; Agu E; Strong DM; Tulu B
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2098-2109. PubMed ID: 27893380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A superpixel-driven deep learning approach for the analysis of dermatological wounds.
    Blanco G; Traina AJM; Traina C; Azevedo-Marques PM; Jorge AES; de Oliveira D; Bedo MVN
    Comput Methods Programs Biomed; 2020 Jan; 183():105079. PubMed ID: 31542688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic glioma segmentation based on adaptive superpixel.
    Wu Y; Zhao Z; Wu W; Lin Y; Wang M
    BMC Med Imaging; 2019 Aug; 19(1):73. PubMed ID: 31443642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated measurement of pressure injury through image processing.
    Li D; Mathews C
    J Clin Nurs; 2017 Nov; 26(21-22):3564-3575. PubMed ID: 28071843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel extended Kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors.
    Chen B; Zhang L; Chen H; Liang K; Chen X
    Comput Methods Programs Biomed; 2021 Mar; 200():105797. PubMed ID: 33317871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM).
    R D S; A S
    Asian Pac J Cancer Prev; 2019 May; 20(5):1555-1561. PubMed ID: 31128062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image segmentation based on GrabCut framework integrating multiscale nonlinear structure tensor.
    Han S; Tao W; Wang D; Tai XC; Wu X
    IEEE Trans Image Process; 2009 Oct; 18(10):2289-302. PubMed ID: 19535321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The UTrack framework for segmenting and measuring dermatological ulcers through telemedicine.
    Cazzolato MT; Ramos JS; Rodrigues LS; Scabora LC; Chino DYT; Jorge AES; de Azevedo-Marques PM; Traina C; Traina AJM
    Comput Biol Med; 2021 Jul; 134():104489. PubMed ID: 34015672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pixel classification based color image segmentation using quaternion exponent moments.
    Wang XY; Wu ZF; Chen L; Zheng HL; Yang HY
    Neural Netw; 2016 Feb; 74():1-13. PubMed ID: 26618250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue classification and segmentation of pressure injuries using convolutional neural networks.
    Zahia S; Sierra-Sosa D; Garcia-Zapirain B; Elmaghraby A
    Comput Methods Programs Biomed; 2018 Jun; 159():51-58. PubMed ID: 29650318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower extremity ulcer image segmentation of visual and near-infrared imagery.
    Bochko V; Välisuo P; Harju T; Alander J
    Skin Res Technol; 2010 May; 16(2):190-7. PubMed ID: 20456099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic psoriasis lesion segmentation in two-dimensional skin images using multiscale superpixel clustering.
    George Y; Aldeen M; Garnavi R
    J Med Imaging (Bellingham); 2017 Oct; 4(4):044004. PubMed ID: 29152533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated framework for accurate segmentation of pressure ulcer images.
    Garcia-Zapirain B; Shalaby A; El-Baz A; Elmaghraby A
    Comput Biol Med; 2017 Nov; 90():137-145. PubMed ID: 28987989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network.
    Khameneh FD; Razavi S; Kamasak M
    Comput Biol Med; 2019 Jul; 110():164-174. PubMed ID: 31163391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient use of mobile devices for quantification of pressure injury images.
    Garcia-Zapirain B; Sierra-Sosa D; Ortiz D; Isaza-Monsalve M; Elmaghraby A
    Technol Health Care; 2018; 26(S1):269-280. PubMed ID: 29710755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.